Advertisement

Production Engineering

, Volume 3, Issue 2, pp 165–174 | Cite as

Determination of material properties for hot hydroforming

  • D. Elsenheimer
  • P. Groche
Production Process

Abstract

For the process design of hydroforming in the “hot” temperature range, reliable data are necessary to describe the material behaviour at elevated temperatures under the occurring loads of hot hydroforming processes. State-of-the-art technologies for the investigation of material behaviour, like uniaxial tensile tests or hydraulic bulge tests, do not provide enough similarity with the process of hot hydroforming. This paper describes a new testing technique, capable of realizing high process temperatures and constant strain rates. It represents a further development of the established technology of tube bulge tests. The hardware is described, its functionality is proven and mathematical approaches for the calculation of stress/strain-curves from experimental data are presented.

Keywords

Production process Material Hot hydroforming 

Notes

Acknowledgments

The authors express their thanks to the DFG (Deutsche Forschungsgemeinschaft) for the support of the project “Untersuchung des Werkstoffverhaltens bei der Warm-Innenhochdruck-Umformung (GR 1818/34-1). The achievements described in this paper mainly result from this project.

References

  1. 1.
    Neugebauer R, Altan T, Geiger M, Kleiner M, Sterzing A (2006) Sheet metal forming at elevated temperatures. Ann CIRP 55(2):793–816. doi: 10.1016/j.cirp.2006.10.008 CrossRefGoogle Scholar
  2. 2.
    Lange K (1984) Umformtechnik Bd. 1: Grundlagen. Springer, BerlinGoogle Scholar
  3. 3.
    Werle T (1994) Superplastische Aluminiumblechumformung unter besonderer Beachtung der Formänderungsgeschwindigkeit. DGM Informationsgesellschaft, OberurselGoogle Scholar
  4. 4.
    Groche P, Dörr J (2005) Tube hydroforming at locally elevated temperatures. Prod Eng XII(1):63–66Google Scholar
  5. 5.
    Neugebauer R, Seifert M (2005) Innenhochdruckumformen von Leichtmetallwerkstoffen ZWF 100, No. 9, pp 481–489Google Scholar
  6. 6.
    Geiger M, Cleleghini M, Novotny S (2005) Advanced process strategies for the hydroforming of complex structures. Tagungsbeitrag, PolenGoogle Scholar
  7. 7.
    Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Technol 138:594–599. doi: 10.1016/S0924-0136(03)00042-6 CrossRefGoogle Scholar
  8. 8.
    Dykstra B (2001) Hot metal gas forming for manufacturing vehicle structural components. MetalForming/September, pp 50–52Google Scholar
  9. 9.
    Amborn et al (2006) HEATforming als Weiterentwicklung der IHU an der Schwelle zur Massivumformung. In: Proceedings 9th Umformtechnisches Kolloquium Darmstadt, 16–17 Feb 2006Google Scholar
  10. 10.
    Heislitz F (2001) Optimierung des Axial-Radial-Umformens—eine Verfahrenserweiterung des Rundknetens. Shaker-Verlag, AachenGoogle Scholar
  11. 11.
    Bortot P, Ceretti E, Giardini C (2008) The determination of flow stress of tubular material for hydroforming applications. J Mater Process Technol 203:381–388. doi: 10.1016/j.jmatprotec.2007.10.047 CrossRefGoogle Scholar
  12. 12.
    Dörr J (2006) Halbwarm-Innenhochdruck-Umformung von Leichtmetallrohren. Shaker Verlag, AachenGoogle Scholar
  13. 13.
    von Breitenbach G (2007) Methode zur Analyse, Bewertung und Optimierung der Prozesskette Profilieren längsnahtgeschweißter Rohre für das Innenhochdruck-Umformen. Shaker Verlag, AachenGoogle Scholar
  14. 14.
    Hielscher C (2001) Entwicklung eines Halbzeugprüfverfahrens für das Innenhochdruck-Umformen von Hohlprofilen. Shaker-Verlag, AachenGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2009

Authors and Affiliations

  1. 1.Institute for Production Engineering and Forming Machines, TU DarmstadtDarmstadtGermany

Personalised recommendations