Production Engineering

, Volume 3, Issue 1, pp 31–40 | Cite as

Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA

  • Anirban Bhattacharya
  • Santanu Das
  • P. Majumder
  • Ajay Batish
Production Process

Abstract

The present paper outlines an experimental study to investigate the effects of cutting parameters on finish and power consumption by employing Taguchi techniques. The high speed machining of AISI 1045 using coated carbide tools was investigated. A combined technique using orthogonal array and analysis of variance was employed to investigate the contribution and effects of cutting speed, feed rate and depth of cut on three surface roughness parameters and power consumption. The results showed a significant effect of cutting speed on the surface roughness and power consumption, while the other parameters did not substantially affect the responses. Thereafter, optimal cutting parameters were obtained.

Keywords

High speed machining Surface roughness Power consumption Taguchi design ANOVA 

References

  1. 1.
    Tugrul Ö (2007) Karpat Yigit, Figueira Luís, Davim J Paulo. Modeling of surface finish and tool flank wear in turning AISI D2 steel with ceramic wiper inserts. J Mater Process Technol 189(1–3):192–198. doi: 10.1016/j.jmatprotec.2007.01.021 Google Scholar
  2. 2.
    Dhar NR, Paul S, Chattopadhyay AB (2001) The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340 steels. Wear 249(10–11):932–942. doi: 10.1016/S0043-1648(01)00825-0 CrossRefGoogle Scholar
  3. 3.
    Dhar NR, Paul S, Chattopadhyay AB (2002) Machining of AISI 4140 steel under cryogenic cooling—tool wear, surface roughness and dimensional deviation. J Mater Process Technol 123(3):483–489. doi: 10.1016/S0924-0136(02)00134-6 CrossRefGoogle Scholar
  4. 4.
    Dhar NR, Kamruzzaman M (2007) Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI 4037 steel under cryogenic condition. Int J Mach Tools Manuf 47(5):754–759. doi: 10.1016/j.ijmachtools.2006.09.018 CrossRefGoogle Scholar
  5. 5.
    Choudhury SK, Bajpai JB (2005) Investigation in orthogonal turn-milling towards better surface finish. J Mater Process Technol 170(3):487–493. doi: 10.1016/j.jmatprotec.2004.12.010 CrossRefGoogle Scholar
  6. 6.
    Gillibrand D, Sarwar M, Pierce CT (1996) The economic benefit of finish turning with coated carbide. J Surf Coat Technol 86–87(2):809–813. doi: 10.1016/S0257-8972(96)03059-9 CrossRefGoogle Scholar
  7. 7.
    Sundaram RM, Lambert BK (1979) Surface roughness variability of AISI 4140 steel in fine turning using carbide tools. Int J Prod Res 17:249–258. doi: 10.1080/00207547908919612 CrossRefGoogle Scholar
  8. 8.
    Tonshoff HK, Wobker HG, Brandt D (1995) Hard turning—influence on the workpiece properties. Trans NAMRI/SME 23:215–220Google Scholar
  9. 9.
    Tonshoff HK, Wobker HG, Brandt D (1996) Tool wear and surface integrity in hard turning. J Prod Eng 3(1):19–24Google Scholar
  10. 10.
    Abaro AM, Apinwall DK, Wise MLH (1995) Tool life and workpiece surface integrity evaluations when machining hardened AISI H13 and AISI E52100 Steels with conventional ceramic and PCBN tool materials. SME technical paper, pp 159Google Scholar
  11. 11.
    Noordin MY, Venkatesh VC, Chan CL, Abduallah A (2001) Performance evaluation of cemented carbide tools in turning AISI 1010 steel. J Mater Process Technol 116:16–21. doi: 10.1016/S0924-0136(01)00838-X CrossRefGoogle Scholar
  12. 12.
    Luk WK, Scrutton RF (1986) The origin of groove wear in the turning operation. Int J Prod Res 6:197–206. doi: 10.1080/00207546708929780 CrossRefGoogle Scholar
  13. 13.
    Trent EM, Wright Paul K Metal Cutting. Butterworth Heinemann, New YorkGoogle Scholar
  14. 14.
    Ross PJ. Taguchi techniques for quality engineering. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Yang WH, Tarng YS (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol 84:122–129. doi: 10.1016/S0924-0136(98)00079-X CrossRefGoogle Scholar
  16. 16.
    Nian CY, Yang WH, Tarng YS (1999) Optimization of turning operations with multiple performance characteristics. J Mater Process Technol 95:90–96. doi: 10.1016/S0924-0136(99)00271-X CrossRefGoogle Scholar
  17. 17.
    Davim JP (2003) Design optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132:340–344. doi: 10.1016/S0924-0136(02)00946-9 CrossRefGoogle Scholar
  18. 18.
    Nalbant M, Gökkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. J Mater Des 28(4):1379–1385Google Scholar
  19. 19.
    Ersan A, Necip C, Burak B (2007) Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool. J Mater Des 28(5):1618–1622Google Scholar
  20. 20.
    Davim J (2007) Paulo, Figueira Luís Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. J Mater Des 28(4):1186–1191Google Scholar
  21. 21.
    Aman A, Hari S, Pradeep Kumar, Manmohan S. Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis”, J Material Process Technol, 2007, onlineGoogle Scholar
  22. 22.
    Faleh A (2005) Al-Sulaiman M, Baseer A, Sheikh Anwar K “Use of electrical power for online monitoring of tool condition. J Mater Process Technol 20:364–371Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2008

Authors and Affiliations

  • Anirban Bhattacharya
    • 1
  • Santanu Das
    • 2
  • P. Majumder
    • 2
  • Ajay Batish
    • 1
  1. 1.Mechanical Engineering DepartmentThapar UniversityPatialaIndia
  2. 2.Mechanical Engineering DepartmentKalyani Government Engineering CollegeKalyaniIndia

Personalised recommendations