Advertisement

Production Engineering

, 2:345 | Cite as

Determination of size-dependent friction functions in sheet metal forming with respect to the distribution of the contact pressure

  • Frank Vollertsen
  • Zhenyu HuEmail author
Production Process

Abstract

The aim of this paper is to optimize the analytical model developed in previous work (Hu et al. in Determination of the friction coefficient in deep drawing, process scaling. In: Vollertsen F, Hollmann F (eds) Proceeding of the 1st colloquium of DFG priority program process scaling. BIAS-Verlag, ISBN 3-933762-14-6, Bremen, pp 27–34, 2003; Hu and Vollertsen in J Technol Plast 29:1–9, 2004; Vollertsen and Hu in Annu CIRP 55(1):291–294, 2006) with respect to the distribution of the contact pressure at the drawing radius. A size-dependent friction function was acquired based on the experimentally measured punch force from strip drawing with deflection, which can identify the tribological size effects in sheet metal forming. This function was implemented in the FEM-simulation. The distribution of the contact pressure at the drawing radius was assumed to be uniform in the previous analytical model, which is not right, since the simulated punch force versus punch travel curve showed a difference of about 11% from the experimental curve (Vollertsen and Hu in Annu CIRP 55(1):291–294, 2006). In the new analytical model the non-uniform distribution of contact pressure between the work piece and the tools was taken into account. The simulated curve using the friction function from the new model shows a better agreement with the experimental curve.

Keywords

Sheet metal Size effects Friction 

Notes

Acknowledgments

The work reported in this paper is funded by the Deutsche Forschungsgemeinschaft (DFG) within the project “Modelling of tribological size-effects in deep drawing” (DFG project no. Vo 530/6). The authors would like thank the DFG for their beneficial support. Moreover the authors would like thank the institute of Metal Forming and Casting (UTG) in Munich in Germany for carry out the tensile test for the Al99.5 in thicknesses of 0.02, 0.1, and 0.2 mm.

References

  1. 1.
    Hu Z, Schulze Niehoff H, Vollertsen F (2003) Determination of the friction coefficient in deep drawing, process scaling. In: Vollertsen F, Hollmann F (eds) Proceeding of the 1st colloquium of DFG priority program process scaling. BIAS-Verlag, ISBN 3-933762-14-6, Bremen, pp 27–34Google Scholar
  2. 2.
    Hu Z, Vollertsen F (2004) A new friction test method. J Technol Plast 29:1–9zbMATHGoogle Scholar
  3. 3.
    Vollertsen F, Hu Z (2006) Tribological size effects in sheet metal forming measured by a strip drawing test. Annu CIRP 55(1):291–294CrossRefGoogle Scholar
  4. 4.
    Olssen DD, Bay N (2004) Prediction of limits of lubrication in strip reduction testing. Ann CIRP 53(1):231–234CrossRefGoogle Scholar
  5. 5.
    Becker P, Jeon HJ, Chang CC, Bramley AN (2003) A geometric approach to modelling friction in metal forming. Ann CIRP 52(1):209–212CrossRefGoogle Scholar
  6. 6.
    Vollertsen F, Hu Z, Schulze H, Niehoff C (2004) Theiler: state of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151:70–79CrossRefGoogle Scholar
  7. 7.
    Engel U (2006) Tribology in microforming. Wear 260(3):265–273CrossRefGoogle Scholar
  8. 8.
    Geiger M, Messner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng 4(1):55–58Google Scholar
  9. 9.
    Hoffmann H, Hong S (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. Ann CIRP 55(1):263–266CrossRefGoogle Scholar
  10. 10.
    Lange K (1990) Umformtechnik—Handbuch für Industrie und Wissenschaft, Band 3: Blechbearbeitung. Springer, BerlinGoogle Scholar
  11. 11.
    Storoschew MW, Popow EA (1968) Grundlagen der Umformtechnik. Verlag Technik, BerlinGoogle Scholar
  12. 12.
    Kluge S, Wolf H (1991) Berechnen des Biegekraftanteils beim Umformen von Blechen, Bänder Bleche Rohre 11:46–54Google Scholar
  13. 13.
    Sass F, Bouché CH, Leitner A (1974) DUBBEL, Taschenbuch für den Maschinenbau, Erster Band. Springer, BerlinGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2008

Authors and Affiliations

  1. 1.BIAS Bremer Institut fuer Angewandte StrahltechnikBremenGermany

Personalised recommendations