Production Engineering

, 2:377 | Cite as

Categories of size effects

  • F. VollertsenEmail author
Production Process


Size effects play an important role in up-or downscaling of processes and the transfer of knowledge to the processing in new geometric dimensions like micro- and nanotechnology. A definition of size effects and a systematic order for size effects is proposed. The main categories are density, shape and microstructure size effects, which can be subdivided into further subcategories. Using the example of size effects in the strength of materials it is shown that the systematic can be used to get the different effects unambiguous into an order, which helps to avoid apparent contradictions in experimental findings.


Production processes Size effects System Flow stress 



The author likes to thank his colleagues, especially D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman, and K. Weinert for the valuable general discussion about size effects, which stimulated the considerations of this paper.


  1. 1.
    Vollertsen F (2003) Size effects in manufacturing. In: Vollertsen F, Hollmann F (eds) BIAS-Verlag, ISBN 3-933762-14-6, Strahltechnik vol 24:1–9Google Scholar
  2. 2.
    Vollertsen F, Yuan S (eds) (2007) Proc. 2nd conf. on new forming technologies (2nd ICNFT) BIAS BremenGoogle Scholar
  3. 3.
    Pawelski O (1964) Beitrag zur Ähnlichkeitstheorie der Umformtechnik. Arch Eisenhuttenwesen 35(1):27–36Google Scholar
  4. 4.
    Pawelski O (1992) Ways and limits of the theory of similarity in application to problems of physics and metal forming. J Mater Process Technol 34:19–30. doi: 10.1016/0924-0136(92)90086-8 CrossRefGoogle Scholar
  5. 5.
    Kopp R, Wiegels H (1998) Einführung in die Umformtechnik, Augustinus Buchhandlung AachenGoogle Scholar
  6. 6.
    Vollertsen F, Walther R (2008) Energy balance in laser-based free form heading. Ann CIRP 57(1):291–294CrossRefGoogle Scholar
  7. 7.
    Kals R, Pucher HJ, Vollertsen F (1995) Effects of specimen size and geometry in metal forming. Proc. of the 2nd int. conf. on advances in materials and processing technologies. In: Hashmi MSJ (ed) Dublin vol 3:1288–1297Google Scholar
  8. 8.
    Armstrong RW (1961) On size effect in polycrystal plasticity. J Mech Phys Solids 9:196–199. doi: 10.1016/0022-5096(61)90018-7 CrossRefGoogle Scholar
  9. 9.
    Justinger H, Hirt G (2007) Analysis of size-effects in the miniaturized deep drawing process. Key Eng Mater 344:791–798CrossRefGoogle Scholar
  10. 10.
    Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N et al (2000) Assembly of microsystems. Ann CIRP 49(2):451–472CrossRefGoogle Scholar
  11. 11.
    Kast D (1969) Modellgesetzmäßigkeiten beim Rückwärtsfließpressen geometrisch ähnlicher Näpfe. PhD-thesis, Giradet EssenGoogle Scholar
  12. 12.
    Geiger M, Engel U, Vollertsen F, Kals R, Messner A (1994) Metal forming of micro parts for electronics. Prod Eng 2(1):15–18CrossRefGoogle Scholar
  13. 13.
    Kals R, Vollertsen F, Geiger M (1996) Scaling effects in sheet metal forming. In: Kals HJJ, Shirvani B, Singh UP, Geiger M (eds) Sheet metal. University of Twente, Enschede II:65–75Google Scholar
  14. 14.
    Peng L, Liu F, Ni J, Lai X (2007) Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des 28(5):1731–1736Google Scholar
  15. 15.
    Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361CrossRefGoogle Scholar
  16. 16.
    Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271. doi: 10.1016/S0022-5096(01)00049-7 zbMATHCrossRefGoogle Scholar
  17. 17.
    Xiang Y, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54(20):5449–5460. doi: 10.1016/j.actamat.2006.06.059 CrossRefGoogle Scholar
  18. 18.
    Brenner SS (1956) Tensile strength of whiskers. J Appl Phys 27(12):1484–1491. doi: 10.1063/1.1722294 CrossRefGoogle Scholar
  19. 19.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830. doi: 10.1016/j.actamat.2004.12.031 CrossRefGoogle Scholar
  20. 20.
    Tiesler N, Engel U, Geiger M (1999) Forming of microparts-effects of miniaturization on friction. Adv Technol Plast 2:889–894Google Scholar
  21. 21.
    Tiesler N (2002) Microforming-size effects in friction and their influence on extrusion processes. Wire 52:34–38Google Scholar
  22. 22.
    Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125/126(9):35–44. doi: 10.1016/S0924-0136(02)00415-6 CrossRefGoogle Scholar
  23. 23.
    Engel U (2004) Tribology in microforming. 2nd int. conf. on tribology in manufacturing processes 549–559Google Scholar
  24. 24.
    Shaw MC (2003) The size effects in metal cutting. Sadhana 28(5):875–896. doi: 10.1007/BF02703319 CrossRefGoogle Scholar
  25. 25.
    Bull SJ (2003) On the origins and mechanisms of the indentation size effects. Z Metallk 94:787–792Google Scholar
  26. 26.
    Janssen PJM, de Keijser TH, Geers MGD (2006) An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater Sci Eng A 419(1/2):238–248. doi: 10.1016/j.msea.2005.12.029 Google Scholar
  27. 27.
    Janssen PJM (2007) First-order size effects in the mechanics of miniaturised components. Ph.D. thesis Eindhoven University of TechnologyGoogle Scholar
  28. 28.
    Raulea LV, Govaert LE, Baaijens FPT (1999) Grain and specimen size effects in processing metal sheets. Adv Technol Plast 2:939–944Google Scholar
  29. 29.
    Raulea LV, Goijaets AM, Govaert LE, Baaijens FPT (1999) Size effects in the processing of thin metal sheets. Proc SheMet 99:521–528Google Scholar
  30. 30.
    Gau JT, Principe C, Wang J (2007) An experimental study on size effects on flow stress and formability of aluminium and brass for microforming. J Mater Process Technol 184(1–3):42–46. doi: 10.1016/j.jmatprotec.2006.11.003 CrossRefGoogle Scholar
  31. 31.
    Lorenzo RD, Beccari S, Micari F (2003) An experimental investigation on micro sheet forming. Proc of the 1st Int CIRP Seminar on Micro and Nano Technology, Copenhagen:73–76Google Scholar
  32. 32.
    Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425. doi: 10.1016/S0022-5096(97)00086-0 zbMATHCrossRefGoogle Scholar
  33. 33.
    Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424. doi: 10.1080/14786437008238426 CrossRefGoogle Scholar
  34. 34.
    Bazant ZP, Guo Z (2002) Size effect and asymptotic matching approximations in strain gradient theories of micro-scale plasticity. Int J Solids Struct 39:5633–5657. doi: 10.1016/S0020-7683(02)00368-2 zbMATHCrossRefGoogle Scholar
  35. 35.
    Manika I, Maniks J (2006) Size effects in micro- and nanoscale indentation. Acta Mater 54(8):2049–2056. doi: 10.1016/j.actamat.2005.12.031 CrossRefGoogle Scholar
  36. 36.
    Zhao M, Slaughter WS, Li M, Mao SX (2003) Material-length-scale-controlled nanoindentation size effects due to strain gradient plasticity. Acta Mater 51:4461–4469. doi: 10.1016/S1359-6454(03)00281-7 CrossRefGoogle Scholar
  37. 37.
    Fredriksson P, Gudmundson P (2005) Size dependent yield strength of thin films. Int J Plast 21(9):1834–1854. doi: 10.1016/j.ijplas.2004.09.005 zbMATHCrossRefGoogle Scholar
  38. 38.
    Tymiak NI, Kramer DE, Bahr DF, Wyrobek TJ, Gerberich WW (2001) Plastic strain and strain gradients at very small indentation depths. Acta Mater 49:1021–1034. doi: 10.1016/S1359-6454(00)00378-5 CrossRefGoogle Scholar
  39. 39.
    Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115. doi: 10.1016/S1359-6454(98)00153-0 CrossRefGoogle Scholar
  40. 40.
    Carrillo JG, Cantwell WJ (2007) Scaling effects in the tensile behaviour of fiber-metal laminates. Compos Sci Technol 67:1684–1693. doi: 10.1016/j.compscitech.2006.06.018 CrossRefGoogle Scholar
  41. 41.
    Herzig N, Meyer LW (2006) Material characterisation at high strain rates with special emphasis on miniaturization and size dependencies. Proc Int Conf on high speed forming (2nd ICHSF) In: M. Kleiner, E. Tekkaya, Dortmund (eds) ISBN 3-00-018432-5:13–22Google Scholar
  42. 42.
    Krüger L, Meyer LW, Halle T, Herzig N (2004) Size effects on flow stress behaviour of tool steel 40CrMnMo7 at high loading rates. Proc 6th Mesomechanics, Patras/Greece:420–425Google Scholar
  43. 43.
    Davidenkov N, Shevandin E, Wittmann F (1947) The influence of size on the brittle strength of steel. J Appl Mech:A63–A67Google Scholar
  44. 44.
    Zhou J, Shan DB, Guo B, Ma DL (2007) Experimental study on specimen and grain size effects in uniaxial tension test of aluminium foil. Key Eng Mater 344:777–782CrossRefGoogle Scholar
  45. 45.
    Hoffmann H, Hong S (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. Ann CIRP 55(1):263–266CrossRefGoogle Scholar
  46. 46.
    Miyazaki S, Fujita H, Hiraoka H (1979) Effect of specimen size on the flow stress of rod specismens of polykristalline Cu–Al alloy. Scr Metab 13(6):447–449. doi: 10.1016/0036-9748(79)90067-X CrossRefGoogle Scholar
  47. 47.
    van Putten K, Franzke M, Hirt G (2007) Size effect on friction and yielding in wire flat rolling. Proc of the 2nd Int. Conf. on new forming technology. In: Vollertsen F, Yuan S. (eds) BIAS Bremen:583–592Google Scholar
  48. 48.
    Geiger M, Messner A, Engel U, Kals R, Vollertsen F (1995) Design of micro-forming processes: fundamentals, material data and friction behaviour. Int Cold Forg Congress 9:155–164Google Scholar
  49. 49.
    Tsai MC, Chen YA, Wu CF, Chen FK (2005) Size-effects in micro-metal sheet forming of unalloyed copper and brass. Adv Mater Res 6–8:705–710CrossRefGoogle Scholar
  50. 50.
    Hong S, Hoffmann H (2003) Study of scaling effects on mechanical properties for milli-forming of sheet metal—tensile test of a very thin sheet. In: Vollertsen F, Hollmann F (eds) Process scaling, BIAS Bremen ISBN 3-933762-14-6:145–151Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2008

Authors and Affiliations

  1. 1.BIAS Bremer Institut für angewandte Strahltechnik GmbHBremenGermany

Personalised recommendations