Skip to main content
Log in

Simulation of the manufacturing process chain of welded frame structures

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Numerical solutions of manufacturing process chains strongly focus on supporting the production of frame structures in the vehicle industry. Frame structures play a central role in all means of transportation, dominating the total mass in automobiles, trains, airplanes, and even space ships. In the case of automobiles, the frame structure mass constitutes about 30% of the total mass. In the case of the automotive industry, the mass-production, the high-quality standards and the need for mass minimization all increase the necessity to apply virtual manufacturing methods in the production cycle of frame structures. In scope of this paper, a method of chaining the numerical analysis of the structural effect on frame components during successive manufacturing processes is introduced. The change of thermal, metallurgical, and mechanical properties in structures during manufacturing is analyzed by applying theoretical models depending on the identified problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altintas Y, Engin S (2001) Generalized modelling of mechanics and dynamics of milling cutters. Ann CIRP 50(1):25–30

    Article  Google Scholar 

  2. Roll K, Tekkaya E (1993) Numerische Verfahren der Prozesssimulation in der Umformtechnik. In: Lange K (ed) Umformtechnik, Handbuch für Industrie und Wissenschaft. Band 4: Sonderverfahren, Prozesssimulation, Werkzeug-technik, Produktion, 2nd edn. Springer, Berlin

    Google Scholar 

  3. Baer T, Kiefer J, Schmidgall G, Burr H (2005) Objectives of seamless digital process chain in the automotive industry. In: 1st international conference of changeable, agile, reconfigurable and virtual production (CARV 2005), pp 227–233

  4. Åström P (2004) Simulation of manufacturing processes in product development. Doctoral Thesis, Luleå University of Technology

  5. Kreis O, Hein P (2001) Manufacturing system for the integrated hydroforming, trimming and welding of sheet metal parts. J Mater Process Technol 115(1):49–54

    Article  Google Scholar 

  6. Cafolla J, Hall RW, Norman DP, McGrecor IJ (2003) “Forming to Crash” simulation in full vehicle models. In: 4th European LS-DYNA Users Conference, Ulm, Germany, 23 May 2003

  7. Kerausch M, Merklein M, Staud D (2005) Finite Element analysis for deep drawing of tailored heat treated blanks. Adv Mater Res 6(8):343–350

    Article  Google Scholar 

  8. Merklein M, Lechler J, Geiger M (2006) Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5. Ann CIRP 55(1):229–236

    Article  Google Scholar 

  9. Tikhomirov D, Rietman B, Kose K, Makkink M (2005) Computing welding distortion: comparison of different industrially applicable methods. Adv Mater Res 6(8):195–202

    Article  Google Scholar 

  10. Masubuchi K (1980) Analysis of welded structures residual stresses, distortion and their consequences. Pergamon Press, Cambridge

    Google Scholar 

  11. Marusisch TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38:3675–3694

    Article  Google Scholar 

  12. Radaj D (1992) Heat effects of welding. Springer, Berlin

    Google Scholar 

  13. Dilthey U (2005) Verhalten der Werkstoffe beim Schweißen, 3rd edn. Springer, Heidelberg

    Google Scholar 

  14. Zaeh MF, Papadakis L, Rauh W (2007) Realisation of the virtual process chain forming-welding on whole assembled automotive body components by means of shell elements. In: Cerjak H et al (eds) Mathematical modelling of weld phenomena, vol 8, pp 537–554

  15. Galanulis K (2005) Optical measuring technologies in sheet metal processing. Adv Mater Res 6(8):19–34

    Article  Google Scholar 

  16. Nakagawa T (1993) Recent developments in auto body panel forming technology. Ann ClRP 42(2):717–722

    Article  Google Scholar 

  17. Burkhardt L, Grigo B, Grießbach B (2006) Simulation des Warmumformprozesses auf Basis der Identifikation einflussreicher Parameter. In: Proceedings of the 1st Erlanger workshop Warmblechumformung, Erlangen, Germany, 7 November 2006

  18. Hoffmann H (1973) Untersuchungen über den Einfluss des statischen und dynamischen Verhaltens einer Presse in vertikaler Richtung auf den Eintauchvorgang beim Schneiden. Doctoral Thesis, Technical University of Berlin (West)

  19. Olsen FO (1983) Investigations in optimizing the laser cutting process, lasers in materials processing, Los Angeles, CA, pp 24–26

    Google Scholar 

  20. Bessert N, Schmidt L (2004) DATOR user manual

  21. Bathe K-J (1990) Finite-element-methoden, 2nd edn. Springer, Berlin

    Google Scholar 

  22. Goldak J, Akhlaghi M (2005) Computational welding mechanics. Springer, New York

    Google Scholar 

  23. SYSTUS (2002) Analysis reference manual. ESI-Group, Paris

    Google Scholar 

  24. Papadakis L, Hornfeck T, Zaeh MF (2007) Interaction between laser beam, process effects and structural properties during welding using models based on the finite element analysis. J Laser App 19(3):189–196

    Article  Google Scholar 

  25. Sudnik WA, Erfeew WA, Kudinow RA, Dilthey U, Bohlmann HC (1998) Simulation of the resistance spot welding of steel with the software SPOTSIM (in Russian). Svar Proiz 45(8):3–8

    Google Scholar 

  26. Bessert N (2004) Die virtuelle Prozesskette als Baustein der digitalen Fertigung, Inpro Workshop

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Langhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaeh, M.F., Papadakis, L. & Langhorst, M. Simulation of the manufacturing process chain of welded frame structures. Prod. Eng. Res. Devel. 2, 385–393 (2008). https://doi.org/10.1007/s11740-008-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0122-4

Keywords

Navigation