Advertisement

Electrocardiographic T wave alterations and prediction of hyperkalemia in patients with acute kidney injury

  • Giuseppe RegolistiEmail author
  • Umberto Maggiore
  • Paolo Greco
  • Caterina Maccari
  • Elisabetta Parenti
  • Francesca Di Mario
  • Valentina Pistolesi
  • Santo Morabito
  • Enrico Fiaccadori
IM - ORIGINAL
  • 15 Downloads

Abstract

Electrocardiographic (ECG) alterations are common in hyperkalemic patients. While the presence of peaked T waves is the most frequent ECG alteration, reported findings on ECG sensitivity in detecting hyperkalemia are conflicting. Moreover, no studies have been conducted specifically in patients with acute kidney injury (AKI). We used the best subset selection and cross-validation methods [via linear and logistic regression and leave-one-out cross-validation (LOOCV)] to assess the ability of T waves to predict serum potassium levels or hyperkalemia (defined as serum potassium ≥ 5.5 mEq/L). We included the following clinical variables as a candidate for the predictive models: peaked T waves, T wave maximum amplitude, T wave/R wave maximum amplitude ratio, age, and indicator variates for oliguria, use of ACE-inhibitors, sartans, mineralocorticoid receptor antagonists, and loop diuretics. Peaked T waves poorly predicted the serum potassium levels in both full and test sample (R2 = 0.03 and R2 = 0.01, respectively), and also poorly predicted hyperkalemia. The selection algorithm based on Bayesian information criterion identified T wave amplitude and use of loop diuretics as the best subset of variables predicting serum potassium. Nonetheless, the model accuracy was poor in both full and test sample [root mean square error (RMSE) = 0.96 mEq/L and adjR2 = 0.08 and RMSE = 0.97 mEq/L, adjR2 = 0.06, respectively]. T wave amplitude and the use of loop diuretics had also poor accuracy in predicting hyperkalemia in both full and test sample [area-under-curve (AUC) at receiver-operator curve (ROC) analysis 0.74 and AUC 0.72, respectively]. Our findings show that, in patients with AKI, electrocardiographic changes in T waves are poor predictors of serum potassium levels and of the presence of hyperkalemia.

Keywords

ECG Potassium Hyperkalemia Acute kidney injury Predictive models 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The Authors declare that they have no conflict of interest.

Statement of human and animal rights

The study was approved by the local ethical board Comitato Etico dell’Area Vasta Emilia Nord).

Informed consent

This was a retrospective study. Informed consent was obtained at the time of enrollment by each patient or next-of-kin.

Supplementary material

11739_2019_2217_MOESM1_ESM.pdf (173 kb)
Supplementary file1 (PDF 173 kb)
11739_2019_2217_MOESM2_ESM.docx (13 kb)
Supplementary file2 (DOCX 13 kb)

References

  1. 1.
    Faubel S, Shah PB (2016) Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv Chron Kidney Dis 23:179–185CrossRefGoogle Scholar
  2. 2.
    Bagshaw SM, Wald R (2017) Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int 91:1022–1032CrossRefGoogle Scholar
  3. 3.
    Liborio AB, Leite TT, Neves FM, Teles F, Bezerra CT (2015) AKI complications in critically ill patients: association with mortality rates and RRT. Clin J Am Soc Nephrol 10:21–28CrossRefGoogle Scholar
  4. 4.
    Freeman K, Feldman JA, Mitchell P et al (2008) Effects of presentation and electrocardiogram on time to treatment of hyperkalemia. Acad Emerg Med 15:239–249CrossRefGoogle Scholar
  5. 5.
    Long B, Warix JR, Koyfman A (2018) Controversies in management of hyperkalemia. J Emerg Med 55:192–205CrossRefGoogle Scholar
  6. 6.
    Mattu A, Brady WJ, Robinson DA (2000) Electrocardiographic manifestations of hyperkalemia. Am J Emerg Med 18:721–729CrossRefGoogle Scholar
  7. 7.
    Aslam S, Friedman E, Ifudu O (2002) Electrocardiography is unreliable in detecting potentially lethal hyperkalemia in hemodialysis patients. Nephrol Dial Transpl 17:1639–1642CrossRefGoogle Scholar
  8. 8.
    Moulik PK, Nethaji C, Khaleeli AA (2002) Misleading electrocardiographic results in patient with hyperkalemia and diabetic ketoacidosis. BMJ 325:1346–1347CrossRefGoogle Scholar
  9. 9.
    Wang K (2004) “Pseudoinfarction” pattern due to hyperkalemia. New Engl J Med 351:593CrossRefGoogle Scholar
  10. 10.
    Fiaccadori E, Maggiore U, Clima B, Melfa L, Rotelli C, Borghetti A (2011) Incidence, risk factors and prognosis of gastrointestinal hemorrhage complcating acute renal failure. Kidney Int 59:1510–1519CrossRefGoogle Scholar
  11. 11.
    Fiaccadori E, Maggiore U, Lombardi M, Leonardi S, Rotelli C, Borghetti A (2000) Predicting patient outcome from acute renal failure comparing three general severity illness scoring systems. Kidney Int 58:283–292CrossRefGoogle Scholar
  12. 12.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470CrossRefGoogle Scholar
  13. 13.
    Rafique Z, Aceves J, Espina I, Peacock F, Sheikh-Hamad D, Kuo D (2019) Can physicians detect hyperkalemia based on the electrocardiogram? Am J Emerg Med. 10:11. doi: 10.1016/j.ajem.2019.04.036Google Scholar
  14. 14.
    Montague BT, Ouellette JR, Buller GK (2008) Retrospective review of ECG changes in hyperkalemia. Clin J Am Soc Nephrol 3:324–330CrossRefGoogle Scholar
  15. 15.
    James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, New York, pp 178–183CrossRefGoogle Scholar
  16. 16.
    Dreyfuss D, Jondeau G, Couturier R et al (1989) Tall T waves during metabolic acidosis without hyperkalemia: a prospective study. Crit Care Med 17:404–408CrossRefGoogle Scholar
  17. 17.
    Martinez-Vea A, Bardaji A, Garcia C, Oliver JA (1999) Severe hyperkalemia with minimal electrocardiographic manifestations. J Electrocardiol 32:45–49CrossRefGoogle Scholar
  18. 18.
    Yu AS (1996) Atypical electrocardiographic changes in severe hyperkalemia. Am J Cardiol 77:906–908CrossRefGoogle Scholar
  19. 19.
    Green D, Green HD, New DI, Kalra PA (2013) The clinical significance of hyperkalemia-associated repolarization abnormalities in end-stage renal disease. Nephrol Dial Transpl 28:99–105CrossRefGoogle Scholar
  20. 20.
    Wrenn KD, Slovis CM, Slovis BS (1991) The ability of physicians to predict hyperkalemia from the ECG. Ann Emerg Med 20:1229–1232CrossRefGoogle Scholar
  21. 21.
    Dillon JJ, DeSimone CV, Sapir Y et al (2015) Noninvasive potassium determination using a mathematically processed ECG: proof of concept for a novel “blood-less blood test”. J Electrocardiol 48:12–18CrossRefGoogle Scholar
  22. 22.
    Somers MP, Brady WJ, Perron AD, Mattu A (2002) The prominant T wave: electrocardiographic differential diagnosis. Am J Emerg Med 20:243–251CrossRefGoogle Scholar
  23. 23.
    Littmann L, Gibbs MA (2018) Electrocardiograhic manifestations of severe hyperkalemia. J Electrocardiol 51:814–817CrossRefGoogle Scholar
  24. 24.
    Dittrich KL, Walls RM (1986) Hyperkalemia: ECG manifestations and clinical considerations. J Emerg Med 4:449–455CrossRefGoogle Scholar
  25. 25.
    Varga C, Kalma Z, Szakall A et al (2019) ECG alterations suggestive of hyperkalemia in normokalemic versus hyperkalemic patients. BMC Emerg Med 19:33CrossRefGoogle Scholar
  26. 26.
    Einhorn LM, Zhan M, Hsu VD et al (2019) The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 169:1156–1162CrossRefGoogle Scholar
  27. 27.
    Bleyer AJ, Hartman J, Brannon PC, Reeves-Daniel A, Satko SG, Russell G (2006) Characteristics of sudden death in hemodialysis patients. Kidney Int 69:2268–2273CrossRefGoogle Scholar
  28. 28.
    Corsi C, Cortesi M, Callisesi G et al (2017) Noninvasive quantification of blood potassium concentration from ECG in hemodialysis patients. Sci Rep 7:42492CrossRefGoogle Scholar
  29. 29.
    Galloway CD, Valys AV, Shreibati JB et al (2019) Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4:428–436CrossRefGoogle Scholar
  30. 30.
    El-Sherif N, Turitto G (2011) Electrolyte disorders and arrhythmogenesis. Cardiol J 18:233–245PubMedGoogle Scholar

Copyright information

© Società Italiana di Medicina Interna (SIMI) 2019

Authors and Affiliations

  • Giuseppe Regolisti
    • 1
    • 2
    Email author
  • Umberto Maggiore
    • 1
    • 2
  • Paolo Greco
    • 1
  • Caterina Maccari
    • 1
  • Elisabetta Parenti
    • 1
  • Francesca Di Mario
    • 1
  • Valentina Pistolesi
    • 3
  • Santo Morabito
    • 3
  • Enrico Fiaccadori
    • 1
    • 2
  1. 1.UO NefrologiaAzienda Ospedaliero-Universitaria Di ParmaParmaItaly
  2. 2.Dipartimento Di Medicina E ChirurgiaUniversità Di ParmaParmaItaly
  3. 3.UOD DialisiPoliclinico Università Di Roma “La Sapienza”RomaItaly

Personalised recommendations