Internal and Emergency Medicine

, Volume 10, Issue 4, pp 413–421 | Cite as

Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important

  • Martina Curto
  • Luana Lionetto
  • Francesco Fazio
  • Dimos-Dimitrios Mitsikostas
  • Paolo Martelletti


Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migraine.


Migraine Kynurenic acid Kynurenine Xanthurenic acid Anthranilic acid Quinolinic acid 


  1. 1.
    Wirleitner B, Neurauter G, Schröcksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10:1581–1591PubMedCrossRefGoogle Scholar
  2. 2.
    Bender DA (1983) Biochemistry of tryptophan in health and disease. Mol Aspects Med 6:101–197PubMedCrossRefGoogle Scholar
  3. 3.
    Magis D, Schoenen J (2011) Treatment of migraine: update on new therapies. Curr Opin Neurol 24(3):203–210PubMedCrossRefGoogle Scholar
  4. 4.
    Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25PubMedGoogle Scholar
  5. 5.
    Tfelt-Hansen PC, Pihl T, Hougaard A, Mitsikostas DD (2014) Drugs targeting 5-hydroxytryptamine receptors in acute treatments of migraine attacks. A review of new drugs and new administration forms of established drugs. Expert Opin Investig Drugs 23:375–385PubMedCrossRefGoogle Scholar
  6. 6.
    Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Miller CL, Llenos IC, Cwik M, Walkup J, Weis S (2008) Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int 52:1297–1303PubMedCrossRefGoogle Scholar
  8. 8.
    Schwarcz MJ, Guillemin GJ, Teipel SJ, Buerger K, Hampel H (2013) Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263:345–352CrossRefGoogle Scholar
  9. 9.
    Párdutz A, Fejes A, Bohár Z, Tar L, Toldi J, Vécsei L (2012) Kynurenines and headache. J Neural Transm 119:285–296PubMedCrossRefGoogle Scholar
  10. 10.
    Dahlem MA (2013) Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos 23(4):046101PubMedCrossRefGoogle Scholar
  11. 11.
    Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154(Suppl 1):S44–S53PubMedCrossRefGoogle Scholar
  12. 12.
    Eikermann-Haerter K, Negro A, Ayata C (2012) Spreading depression and the clinical correlates of migraine. Rev Neurosci 24:353–363Google Scholar
  13. 13.
    Vikelis M, Mitsikostas DD (2007) The role of glutamate and its receptors in migraine. CNS Neurol Disord: Drug Targets 6:251–257CrossRefGoogle Scholar
  14. 14.
    Takikawa O (2005) Biochemical and medical aspects of indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun 338:12–19PubMedCrossRefGoogle Scholar
  15. 15.
    Fazio F, Lionetto L, Molinaro G, Bertrand HO, Acherì F, Ngomba RT, Notartomaso S, Curini M, Rosati O, Scarselli P, Di Marco R, Battaglia G, Bruno V, Simmaco M, Pin JP, Nicoletti F, Goudet C (2012) Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 81:643–656PubMedCrossRefGoogle Scholar
  16. 16.
    Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112PubMedCrossRefGoogle Scholar
  17. 17.
    Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10PubMedCrossRefGoogle Scholar
  18. 18.
    Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627PubMedCrossRefGoogle Scholar
  19. 19.
    Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133–139PubMedCrossRefGoogle Scholar
  20. 20.
    Banerjee J, Alkondon M, Albuquerque EX (2012) Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via α7 nAChR-dependent and -independent mechanisms. Biochem Pharmacol 84:1078–1087PubMedCrossRefGoogle Scholar
  21. 21.
    Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169PubMedCrossRefGoogle Scholar
  22. 22.
    Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21:149–154PubMedCrossRefGoogle Scholar
  23. 23.
    Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107PubMedCrossRefGoogle Scholar
  24. 24.
    Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857–3863PubMedCrossRefGoogle Scholar
  25. 25.
    Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275PubMedCrossRefGoogle Scholar
  26. 26.
    Gobaille S, Kemmel V, Brumaru D, Dugave C, Aunis D, Maitre M (2008) Xanthurenic acid distribution, transport, accumulation and release in the rat brain. J Neurochem 105:982–993PubMedCrossRefGoogle Scholar
  27. 27.
    Copeland CS, Neale SA, Salt TE (2013) Actions of xanthurenic acid, a putative endogenous group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology 66:133–142PubMedCrossRefGoogle Scholar
  28. 28.
    Stovner L, Hagen K, Jensen R, Katsarava Z, Lipton R, Scher A, Steiner T, Zwart JA (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27:193–210PubMedCrossRefGoogle Scholar
  29. 29.
    Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 14:62PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982PubMedGoogle Scholar
  31. 31.
    Bohár Z, Fejes-Szabó A, Tar L, Varga H, Tajti J, Párdutz Á, Vécsei L (2013) Evaluation of c-Fos immunoreactivity in the rat brainstem nuclei relevant in migraine pathogenesis after electrical stimulation of the trigeminal ganglion. Neurol Sci. 34:1597–1604PubMedCrossRefGoogle Scholar
  32. 32.
    Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9:637–644PubMedCrossRefGoogle Scholar
  33. 33.
    Cananzi AR, D’Andrea G, Perini F, Zamberlan F, Welch KM (1995) Platelet and plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia 15:132–135PubMedCrossRefGoogle Scholar
  34. 34.
    Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AM, Svensson P, Baad-Hansen L (2013) Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain 14:2PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Filipović B, Matak I, Lacković Z (2014) Dural neurogenic inflammation induced by neuropathic pain is specific to cranial region. J Neural Transm 121:555–563PubMedCrossRefGoogle Scholar
  36. 36.
    Diener HC (2014) CGRP as a new target in prevention and treatment of migraine. Lancet Neurol 13:1065–1067PubMedCrossRefGoogle Scholar
  37. 37.
    Laursen JC, Cairns BE, Dong XD, Kumar U, Somvanshi RK, Arendt-Nielsen L, Gazerani P (2014) Glutamate dysregulation in the trigeminal ganglion: a novel mechanism for peripheral sensitization of the craniofacial region. Neuroscience 256:23–35PubMedCrossRefGoogle Scholar
  38. 38.
    Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46(Suppl 1):S39–S44PubMedCrossRefGoogle Scholar
  39. 39.
    Mitsikostas DD, del Sanchez RM, Waeber C, Huang Z, Cutrer FM, Moskowitz MA (1999) Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol 127:623–630PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696PubMedCrossRefGoogle Scholar
  41. 41.
    Tajti J, Szok D, Párdutz Á, Tuka B, Csáti A, Kuris A, Toldi J, Vécsei L (2012) Where does a migraine attack originate? In the brainstem. J Neural Transm 119(5):557–568PubMedCrossRefGoogle Scholar
  42. 42.
    Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660PubMedCrossRefGoogle Scholar
  43. 43.
    Welch KM, Nagesh V, Aurora SK, Gelman N (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41:629–637PubMedCrossRefGoogle Scholar
  44. 44.
    Renno WM, Alkhalaf M, Mousa A, Kanaan RA (2008) A comparative study of excitatory and inhibitory amino acids in three different brainstem nuclei. Neurochem Res 33(1):150–159PubMedCrossRefGoogle Scholar
  45. 45.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142PubMedCrossRefGoogle Scholar
  46. 46.
    Ayata C, Moskowitz MA (2006) Cortical spreading depression confounds concentration-dependent pial arteriolar dilation during N-methyl-d-aspartate superfusion. Am J Physiol Heart Circ Physiol 290:H1837–H1841PubMedCrossRefGoogle Scholar
  47. 47.
    Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 23(14):62CrossRefGoogle Scholar
  48. 48.
    Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82PubMedCrossRefGoogle Scholar
  49. 49.
    Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S, Steinbusch HW, Leonard BE, Kim YK (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581PubMedCrossRefGoogle Scholar
  50. 50.
    Martelletti P, Stirparo G, Morrone S, Rinaldi C, Giacovazzo M (1997) Inhibition of intercellular adhesion molecule-1 (ICAM-1), soluble ICAM-1 and interleukin-4 by nitric oxide expression in migraine patients. J Mol Med (Berl) 75:448–453CrossRefGoogle Scholar
  51. 51.
    Munno I, Marinaro M, Bassi A, Cassiano MA, Causarano V, Centonze V (2001) Immunological aspects in migraine: increase of IL-10 plasma levels during attack. Headache 41:764–767PubMedCrossRefGoogle Scholar
  52. 52.
    Drummond PD (2006) Tryptophan depletion increases nausea, headache and photophobia in migraine sufferers. Cephalalgia 26:1225–1233PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16:279–285PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res 2:1–19PubMedCentralPubMedGoogle Scholar
  55. 55.
    Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111PubMedCrossRefGoogle Scholar
  57. 57.
    Oláh G, Herédi J, Menyhárt A, Czinege Z, Nagy D, Fuzik J, Kocsis K, Knapp L, Krucsó E, Gellért L, Kis Z, Farkas T, Fülöp F, Párdutz A, Tajti J, Vécsei L, Toldi J (2013) Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. Drug Des Devel Ther 16(7):981–987Google Scholar
  58. 58.
    Kiss C, Shepard PD, Bari F, Schwarcz R (2004) Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex. Brain Res 1002:129–135PubMedCrossRefGoogle Scholar
  59. 59.
    Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S (2012) Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol 236:207–214PubMedCrossRefGoogle Scholar
  60. 60.
    Knyihár-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421PubMedCrossRefGoogle Scholar
  61. 61.
    Vámos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009) l-Kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429PubMedCrossRefGoogle Scholar
  62. 62.
    Vámos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz A, Vécsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache 50:834–843PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang YQ, Ji GC, Wu GC, Zhao ZQ (2003) Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res 966:300–307PubMedCrossRefGoogle Scholar
  64. 64.
    Mecs L, Tuboly G, Nagy E, Benedek G, Horvath G (2009) The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth Analg 109:1297–1304PubMedCrossRefGoogle Scholar
  65. 65.
    Knyihár-Csillik E, Chadaide Z, Okuno E, Krisztin-Péva B, Toldi J, Varga C, Molnár A, Csillik B, Vécsei L (2004) Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 186:242–247PubMedCrossRefGoogle Scholar
  66. 66.
    Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028PubMedCrossRefGoogle Scholar
  67. 67.
    Fejes-Szabó A, Bohár Z, Vámos E, Nagy-Grócz G, Tar L, Veres G, Zádori D, Szentirmai M, Tajti J, Szatmári I, Fülöp F, Toldi J, Párdutz Á, Vécsei L (2014) Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm 121:725–738PubMedCrossRefGoogle Scholar
  68. 68.
    Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, La Cruz VP (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33:538–547PubMedCrossRefGoogle Scholar
  69. 69.
    Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190–198PubMedCrossRefGoogle Scholar
  70. 70.
    Gupta R, Pathak R, Bhatia MS, Banerjee BD (2009) Comparison of oxidative stress among migraineurs, tension-type headache subjects, and a control group. Ann Indian Acad Neurol 12:167–172PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V (2007) The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 27:8297–8308PubMedCrossRefGoogle Scholar
  72. 72.
    Fejes A, Párdutz A, Toldi J, Vécsei L (2011) Kynurenine metabolites and migraine: experimental studies and therapeutic perspectives. Curr Neuropharmacol 9:376–387PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077PubMedCrossRefGoogle Scholar
  74. 74.
    Lowe MM, Mold JE, Kanwar B, Huang Y, Louie A, Pollastri MP, Wang C, Patel G, Franks DG, Schlezinger J, Sherr DH, Silverstone AE, Hahn ME, McCune JM (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS ONE 9:e87877PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Fazio F, Zappulla C, Notartomaso S, Busceti C, Bessede A, Scarselli P, Vacca C, Gargaro M, Volpi C, Allegrucci M, Lionetto L, Simmaco M, Belladonna ML, Nicoletti F, Fallarino F (2014) Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology 81:237–243PubMedCrossRefGoogle Scholar
  76. 76.
    Lapin IP (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Transm 42:37–43PubMedCrossRefGoogle Scholar
  77. 77.
    Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318PubMedCrossRefGoogle Scholar
  78. 78.
    Obrenovitch TP, Urenjak J (2003) Accumulation of quinolinic acid with neuroinflammation: does it mean excitotoxicity? Adv Exp Med Biol 527:147–154PubMedCrossRefGoogle Scholar
  79. 79.
    Gentile G, Chiossi L, Lionetto L, Martelletti P, Borro M (2014) Pharmacogenetic insights into migraine treatment in children. Pharmacogenomics 15:1539–1550PubMedCrossRefGoogle Scholar

Copyright information

© SIMI 2015

Authors and Affiliations

  • Martina Curto
    • 1
    • 2
  • Luana Lionetto
    • 3
  • Francesco Fazio
    • 4
  • Dimos-Dimitrios Mitsikostas
    • 5
  • Paolo Martelletti
    • 6
    • 7
  1. 1.Psychiatric Unit, Neurosciences, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea HospitalSapienza University of RomeRomeItaly
  2. 2.Department of PsychiatryHarvard Medical SchoolBostonUSA
  3. 3.Advanced Molecular Diagnostics Unit (DiMA)Sant’Andrea HospitalRomeItaly
  4. 4.I.R.C.C.S. Neuromed, Parco TecnologicoPozzilliItaly
  5. 5.Neurology DepartmentAthensNaval HospitalAthensGreece
  6. 6.Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
  7. 7.Regional Referral Headache CentreSant’Andrea HospitalRomeItaly

Personalised recommendations