Internal and Emergency Medicine

, Volume 8, Supplement 1, pp 35–39

Sudden death and physical exercise: timely diagnosis of congenital anomalies of the coronary arteries with the new 320-slide multi-detector computed tomography

  • Carlo Gaudio
  • Francesco Pelliccia
  • Antonietta Evangelista
  • Nicola Viceconte
  • Cesare Greco
  • Ferdinando Franzoni
  • Fabio Galetta
  • Giuseppe Speziale
  • Antonio Pelliccia
Review

Abstract

Congenital abnormalities of the coronary arteries here described are an uncommon form of structural heart disease. Nevertheless, they deserve attention because may cause chest pain and, in some cases, sudden cardiac death even during exercise. Traditional angiography has limitations due to its projectional and invasive nature. The recent development of the 320-slide multi-detector computer tomography with low radiation exposure has the potential to modify the current diagnostic work-up, as it allows even in young people a timely identification of clinical significant coronary anomalies minimizing the risks related to radiation exposure.

Keywords

Congenital coronary anomalies Coronary angiography Multi-detector computed tomography 

References

  1. 1.
    Yamanaka O, Hobbs RE (1990) Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Catheter Cardiovasc Diagn 21:28–40CrossRefGoogle Scholar
  2. 2.
    Alexander RW, Griffith GC (1956) Anomalies of the coronary arteries and their clinical significance. Circulation 14:800–805PubMedCrossRefGoogle Scholar
  3. 3.
    Greenberg MA, Fish BG, Spindola-Franco H (1989) Congenital anomalies of coronary artery: classification and significance. Radiol Clin N Am 27:1127–1146PubMedGoogle Scholar
  4. 4.
    Maron BJ, Maron BJ, Shirani J et al (1996) Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276:199–204PubMedCrossRefGoogle Scholar
  5. 5.
    Pelliccia A (2001) Congenital coronary artery anomalies in young patients. J Am Coll Cardiol 37:598–600PubMedCrossRefGoogle Scholar
  6. 6.
    Davies JA, Cecchin F, Jones TK, Portman MA (2001) Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 37:593–597CrossRefGoogle Scholar
  7. 7.
    Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (committee on coronary angiography). Developed in collaboration with the society for cardiac angiography and interventions. J Am Coll Cardiol 33:1756–1824PubMedCrossRefGoogle Scholar
  8. 8.
    Sun Z, Ng KH (2010) Multislice CT angiography in cardiac imaging. Part III: radiation risk and dose reduction. Singap Med 51:374–380Google Scholar
  9. 9.
    Einstein AJ, Elliston CD, Arai AE (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706PubMedCrossRefGoogle Scholar
  10. 10.
    Pelliccia F, Pasceri V, Evangelista A, Pergolini A, Barillà F, Viceconte N, Tanzilli G, Schiariti M, Greco C, Gaudio (2012) Diagnostic accuracy of 320-row computed tomography as compared with invasive coronary angiography in unselected, consecutive patients with suspected coronary artery disease. Int J Cardiovasc Imaging 29:443–452Google Scholar
  11. 11.
    Sun Z (2010) Multislice CT angiography in coronary artery disease: technical developments, radiation dose and diagnostic value. World J Cardiol 2:333–343PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang C, Zhang Z, Yan Z, Xu L, Yu W, Wang R (2010) 320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc ImagingGoogle Scholar
  13. 13.
    Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multidetector row CT examinations: clinical evaluation. Radiology 237:213–223PubMedCrossRefGoogle Scholar
  14. 14.
    Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur J Radiol 19:2357–2362CrossRefGoogle Scholar
  15. 15.
    Faruqui AM, Maloy WC, Felner JM, Schlant RC, Logan WD, Symbas P (1978) Symptomatic myocardial bridging of coronary artery. Am J Cardiol 41:1305–1310PubMedCrossRefGoogle Scholar
  16. 16.
    Rossi L, Dander B, Nidasio GP, Arbustini E et al (1980) Myocardial bridges and ischemic heart disease. Eur Heart J 1:239–245PubMedGoogle Scholar
  17. 17.
    La Grutta L, Runza G, Lo Re G et al (2009) Prevalence of myocardial bridging and correlation with coronary atherosclerosis studied with 64-slice CT coronary angiography. Radiol Med 114:1024–1036PubMedCrossRefGoogle Scholar

Copyright information

© SIMI 2013

Authors and Affiliations

  • Carlo Gaudio
    • 1
    • 2
  • Francesco Pelliccia
    • 1
  • Antonietta Evangelista
    • 1
  • Nicola Viceconte
    • 1
  • Cesare Greco
    • 1
  • Ferdinando Franzoni
    • 3
  • Fabio Galetta
    • 3
  • Giuseppe Speziale
    • 4
  • Antonio Pelliccia
    • 5
  1. 1.Department “Attilio Reale”Sapienza UniversityRomeItaly
  2. 2.Eleonora Lorillard Spencer Cenci FoundationRomeItaly
  3. 3.Department of Internal MedicineUniversity of PisaPisaItaly
  4. 4.Anthea Hospital, GVM Care and ResearchES Health Science FoundationBariItaly
  5. 5.Institute of Sport Medicine and ScienceRomeItaly

Personalised recommendations