Advertisement

Internal and Emergency Medicine

, Volume 9, Issue 1, pp 3–8 | Cite as

Diagnosing small bowel malabsorption: a review

  • Cinzia PapadiaEmail author
  • Antonio Di Sabatino
  • Gino Roberto Corazza
  • Alastair Forbes
IM - REVIEW

Abstract

Malabsorption encompasses dysfunctions occurring during the digestion and absorption of nutrients. A small proportion of patients presents with chronic diarrhoea. A clinical history supportive of malabsorption may guide investigations toward either the small bowel or pancreas. Serological testing for coeliac disease will determine most cases without invasive investigations. In the clinical context of persisting weight loss and malnutrition, small bowel enteropathy may be investigated with small intestinal biopsies. Small bowel absorptive capacity and permeability might be measured by oral sugar-mix ingestion. Further, approaches to the investigation of malabsorption might also involve the detection in faeces of a substance that has not been absorbed. A variation of the latter is the use of breath testing which relies on the breakdown of the malabsorbed test substance by colonic flora. Measurement of protein absorption is difficult and unreliable; it is, therefore, rarely advocated in clinical settings. No single biological marker confirming a diagnosis of small bowel malabsorption or small bowel integrity is presently available in clinical practice. Plasma citrulline concentration, an amino acid not incorporated into endogenous or exogenous proteins, has been extensively used in research studies and supportive results are establishing its concentration as a reliable quantitative biomarker of enterocyte absorptive capacity.

Keywords

Malabsorption syndrome Citrulline Intestinal absorption 

Notes

Conflict of interest

None.

References

  1. 1.
    Thomas PD, Forbes A, Green J et al (2003) Guidelines for the investigation of chronic diarrhoea. Gut 52:1–15CrossRefGoogle Scholar
  2. 2.
    Rostom A, Murray JA, Kagnoff MF (2006) American gastroenterological association (AGA) institute technical review on the diagnosis and management of celiac disease. Gastroenterology 131:1981–2002PubMedCrossRefGoogle Scholar
  3. 3.
    Mubarak A, Gmelig-Meyling FH, Wolters VM et al (2011) Immunoglobulin G antibodies against deamidated-gliadin-peptides outperform antiendomysium and tissue transglutaminase antibodies in children < 2 years age. APMIS. 119:894–900PubMedCrossRefGoogle Scholar
  4. 4.
    Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalez S, Gupta A, Cheng J, Tennyson C, Lewis SK, Bhagat G et al (2010) Prospective study of the role of duodenal bulb biopsies in the diagnosis of celiac disease. Gastrointest Endosc 72:758–765PubMedCrossRefGoogle Scholar
  6. 6.
    Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 102:330–354PubMedGoogle Scholar
  7. 7.
    Dickson BC, Streutker CJ, Chetty R (2006) Coeliac disease: an update for pathologists. J Clin Pathol 59:1008–1016PubMedCrossRefGoogle Scholar
  8. 8.
    Oberhuber G, Granditsch G, Vogelsang H (1999) The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 1:1185–1194CrossRefGoogle Scholar
  9. 9.
    Corazza GR, Villanacci V (2005) Coeliac disease. Some considerations on the histological classification. J Clin Pathol 58:573–574PubMedCrossRefGoogle Scholar
  10. 10.
    Corazza GR, Villanacci V, Zambelli C et al (2007) Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin Gastroenterol Hepatol 5:838–843PubMedCrossRefGoogle Scholar
  11. 11.
    Cook GC, Segal I, Farthing MJ (1996) ‘Tropical sprue’: some early investigators favoured an infective cause, but was a coccidian protozoan involved? Gut 39:428–429CrossRefGoogle Scholar
  12. 12.
    Veitch AM, Kelly P, Zulu IS et al (2001) Tropical enteropathy: a T-cell mediated crypt hyperplastic enteropathy. Eur J Gastroenterol Hepatol 13:1175–1181PubMedCrossRefGoogle Scholar
  13. 13.
    Keusch GT (1972) Subclinical malabsorption in Thailand. I. Intestinal absorption in Thai children. Am J Clin Nutr 25:1062–1066PubMedGoogle Scholar
  14. 14.
    Lindenbaum J, Alam AK, Kent TH (1966) Subclinical small-intestinal disease in East Pakistan. BMJ 2:1616–1619PubMedCrossRefGoogle Scholar
  15. 15.
    Ukabam SO, Homeida MM, Cooper BT (1986) Small intestinal permeability in normal Sudanese subjects: evidence of tropical enteropathy. Trop Med Hyg 80:204–207CrossRefGoogle Scholar
  16. 16.
    Iqbal TH, Lewis KO, Gearty JC, Cooper BT (1996) Small intestinal permeability to mannitol and lactulose in the three ethnic groups resident in west Birmingham. Gut 39:199e203CrossRefGoogle Scholar
  17. 17.
    Ohkohchi N, Himukai M, Igarashi Y et al (1986) Mechanism of d-xylose transport in human small intestine. J Pediatr Gastroenterol Nutr 5:372–378PubMedCrossRefGoogle Scholar
  18. 18.
    Malamut G, Vercarre V, Suarez F et al (2010) The enteropathy associated with common variable immodeficiency: the delineated frontiers with celiac disease. Am J Gastroenterol 10:2262–2275CrossRefGoogle Scholar
  19. 19.
    Luzi G, Zullo A, Iebba F et al (2003) Duodenal pathology and clinical-immunological implications in common variable immunodeficiency patients. Am J Gastroenterol 98:118–121PubMedCrossRefGoogle Scholar
  20. 20.
    Craig RM, Atkinson AJJ (1988) d-Xylose testing: a review. Gastroenterology 95:223–231PubMedGoogle Scholar
  21. 21.
    Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581PubMedCrossRefGoogle Scholar
  22. 22.
    Duncan A, Hill PG (1998) A UK survey of laboratory-based gastrointestinal investigations. Ann Clin Biochem 35:492–503PubMedGoogle Scholar
  23. 23.
    Ventrucci M, Cipolla A, Di Stefano M et al (1998) Determination of fecal fat concentration by near infrared spectrometry for the screening of pancreatic steatorrhea. Int J Pancreatol 23:17–23PubMedGoogle Scholar
  24. 24.
    Van de Kamer J, Ten Bookkel Huinink H, Weyers H (1949) Rapid method for the determination of fat in feces. J Biol Chem 347–55Google Scholar
  25. 25.
    Van De Kamer JH (1953) Quantitative determination of the saturated and unsaturated higher fatty acids in fecal fat. Scand J Clin Lab Invest 5:30–36CrossRefGoogle Scholar
  26. 26.
    Amann ST, Josephson SA, Toskes PP (1997) Acid steatocrit: a simple, rapid gravimetric method to determine steatorrhea. Am J Gastroenterol 92:2280–2284PubMedGoogle Scholar
  27. 27.
    Korpi-Steiner NL, Ward JN, Kumar V et al (2009) Comparative analysis of fecal quantitation via nuclear magnetic resonance spectroscopy (1 H NMR) and gravimetry. Clin Chim Acta 400:33–36PubMedCrossRefGoogle Scholar
  28. 28.
    Turner JM, Lawrence S, Fellows IW et al (1987) [14C]-triolein absorption: a useful test in the diagnosis of malabsorption. Gut 28:694–700PubMedCrossRefGoogle Scholar
  29. 29.
    Duncan A, Cameron A, Stewart MJ et al (1992) Limitations of the triolein breath test. Clin Chim Acta 205:51–64PubMedCrossRefGoogle Scholar
  30. 30.
    Newcomer AD, Hofmann AF, DiMagno EP, Thomas PJ, Carlson GL (1979) Triolein breath test: a sensitive and specific test for fat malabsorption. Gastroenterology 76:6–13PubMedGoogle Scholar
  31. 31.
    Mundlos S, Kiihnelt P, Adler G (1990) Monitoring enzyme replacement treatment in exocrine pancreatic insufficiency using the cholesteryl octanoate breath test. Gut 31:1324–1328PubMedCrossRefGoogle Scholar
  32. 32.
    Watkins JB, Schoeller DA, Klein PD, Ott DG, Newcomer AD, Hofmann AF (1977) 13C-trioctanoin: a nonradioactive breath test to detect fat malabsorption. Lab Clin Med 90:422–430Google Scholar
  33. 33.
    Strygler B, Nicar MJ, Santangelo WC et al (1990) Alpha 1-antitrypsin excretion in stool in normal subjects and in patients with gastrointestinal disorders. Gastroenterology 99:1380–1387PubMedGoogle Scholar
  34. 34.
    Waldmann TA, Wochner RD, Strober W (1969) The role of the gastrointestinal tract in plasma protein metabolism. Studies with 51Cr-albumin. Am J Med 46:275–285PubMedCrossRefGoogle Scholar
  35. 35.
    Klein S (1990) The myth of serum albumin as a measure of nutritional status. Gastroenterology 15:458–482Google Scholar
  36. 36.
    Oh RC, Brown DL (2003) Vitamin B12 deficiency. Am Fam Physician 67:979–986PubMedGoogle Scholar
  37. 37.
    Eusufzai S, Axelson M, Angelin B et al (1993) Serum 7 alpha-hydroxy-4-cholesten-3-one concentrations in the evaluation of bile acid malabsorption in patients with diarrhoea: correlation to SeHCAT test. Gut 34:698–701PubMedCrossRefGoogle Scholar
  38. 38.
    Brydon WG, Nyhlin H, Eastwood MA et al (1996) Serum 7 alpha-hydroxy-4-cholesten-3- one and selenohomocholyltaurine (SeHCAT) whole body retention in the assessment of bile acid induced diarrhoea. Eur J Gastroenterol Hepatol 8:117–123PubMedCrossRefGoogle Scholar
  39. 39.
    Rabier D, Kamoun P (1995) Metabolism of citrulline in men. Amino Acids 9:299–316PubMedCrossRefGoogle Scholar
  40. 40.
    Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480PubMedGoogle Scholar
  41. 41.
    Thomson ABR (2012) Recent advances in small bowel diseases : part II. World J Gastroenterol 14:3353–3374CrossRefGoogle Scholar
  42. 42.
    Crenn P, Vahedi K, Lavergne-Slove A et al (2003) Plasma citrulline a marker of enterocyte mass in villous atrophy associated small bowel disease. Gastroenterology 124:1210–1219PubMedCrossRefGoogle Scholar
  43. 43.
    Papadia C, Kelly P, Caini S (2010) Plasma citrulline as a quantitative biomarker of HIV-associated villous atrophy in a tropical enteropathy population. Clin Nutr. 29:795–800PubMedCrossRefGoogle Scholar
  44. 44.
    Papadia C, Sherwood RA, Kalantzis C, Wallis K, Volta U, Fiorini E, Forbes A (2007) Plasma citrulline concentration a reliable marker of small bowel absorptive capacity indipendent of intestinal inflammation. Am J Gastroenterol 102:1–9CrossRefGoogle Scholar
  45. 45.
    Corrao G, Corazza G, Bagnardi V et al (2001) Mortalità in patients with coeliac disease and their relatives: a cohort study. Lancet 358:356–361PubMedCrossRefGoogle Scholar
  46. 46.
    Crenn P, De Truchis P, Neveux N et al (2009) Plasma citrulline is a biomarker of enterocyte mass and an indicator of parenteral nutrition in HIV-infected patients. Am J Clin Nutr 90:587–594PubMedCrossRefGoogle Scholar
  47. 47.
    Hozjasz KK, Szaflarska-Poplawska A et al (2006) Whole blood citrulline levels in patients with coeliac disease. Pol Merkur Lekarski. 20:173–175Google Scholar
  48. 48.
    Ludy CH, W LC Lutgens, Nicolaas E P NE Deutz et al. (2003) Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys 57:1067–1074Google Scholar
  49. 49.
    Peters JH, Wierdsma NJ, Teerlink T, van Leeuwen PA et al (2007) Poor diagnostic accuracy of a single fasting plasma citrulline concentration to assess intestinal energy absorbtion capacity. Am J Gastroenterol 102:2814–2819PubMedCrossRefGoogle Scholar
  50. 50.
    Miceli E, Poggi N, Missanelli A (2008) Is serum citrulline measurement clinically useful in coeliac disease? Intern Emerg Med 3:233–236PubMedCrossRefGoogle Scholar
  51. 51.
    Peters JH, Wierdsma NJ, Teerlink T (2008) The citrulline generation test: proposal for a new enterocyte function test. Aliment Pharmacol Ther 27:1300–1310PubMedCrossRefGoogle Scholar
  52. 52.
    Keur MB, Beishuizen A (2010) Diagnosing malabsorption in the intensive care unit. Medicine Reports 2–7Google Scholar
  53. 53.
    Piton G, Manzon C, Monnet E et al (2010) Plasma citrulline kinetics and prognostic value in critically ill patients. Intensive Care Med 36:702–706PubMedCrossRefGoogle Scholar
  54. 54.
    Van Vliet MJ, Tissing WJ, Rings EH et al (2009) Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatric Blood Cancer. 53:1188–1194PubMedCrossRefGoogle Scholar
  55. 55.
    Fijulstra M, Rings EHHM, Verkade HJ et al (2011) Lactose maldigestion during methotrexate-induced gastrointestinal mucositis in a rat model. Am J Physiol Gastrointest Liver Physiol 300:283–291CrossRefGoogle Scholar

Copyright information

© SIMI 2012

Authors and Affiliations

  • Cinzia Papadia
    • 1
    • 2
    Email author
  • Antonio Di Sabatino
    • 3
  • Gino Roberto Corazza
    • 3
  • Alastair Forbes
    • 2
  1. 1.Gastroenterology UnitParma University HospitalParmaItaly
  2. 2.Department of GastroenterologyUniversity College HospitalLondonUK
  3. 3.First Department of Medicine, S. Matteo HospitalUniversity of PaviaPaviaItaly

Personalised recommendations