Internal and Emergency Medicine

, Volume 6, Issue 6, pp 487–495 | Cite as

The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases

  • Giuseppe Murdaca
  • Barbara Maria Colombo
  • Francesco Puppo
IM - Review

Abstract

The emerging role of interleukin-17 as a hallmark proinflammatory cytokine of the adaptive immune system produced by a new T helper cell subset termed “Th17” has received considerable attention. In this review we will focus on recent information regarding IL-17 and its relevance in autoimmune and chronic inflammatory diseases.

Keywords

Th-17 Cytokines Inflammatory diseases 

References

  1. 1.
    Nalbandian A, Crispín JC, Tsokos GC (2009) Interleukin-17 and systemic lupus erythematosus: current concepts. Clin Exp Immunol 157(2):209–215PubMedCrossRefGoogle Scholar
  2. 2.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852PubMedCrossRefGoogle Scholar
  3. 3.
    Korn T, Oukka M, Kuchroo VK, Bettelli E (2007) Th17 cells: effector cells with inflammatory properties. Semin Immunol 19:362–371PubMedCrossRefGoogle Scholar
  4. 4.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517PubMedCrossRefGoogle Scholar
  5. 5.
    Zenewicz LA, Antov A, Flavell RA (2009) CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 15(5):199–207PubMedCrossRefGoogle Scholar
  6. 6.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914PubMedCrossRefGoogle Scholar
  7. 7.
    Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F et al (2008) Human interleukin 17-producing cells originate from a CD161+ CD4+ T cell precursor. J Exp Med 205(8):1903–1916PubMedCrossRefGoogle Scholar
  8. 8.
    Annunziato F, Romagnani S (2009) Do studies in humans better depict Th17 cells? Blood 114(11):2213–2219PubMedCrossRefGoogle Scholar
  9. 9.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol l8(9):942–949CrossRefGoogle Scholar
  10. 10.
    Manel N, Unutmaz D, Littman DR (2008) The differentiation of human Th17 cells requires transforming growth factor-beta and induction of the nuclear receptor ROR gamma t. Nat Immunol 9(6):641–649PubMedCrossRefGoogle Scholar
  11. 11.
    Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E et al (2008) A critical function for transforming growth factor-beta, interleukin-23 and proinflammatory cytokines in driving and modulating human Th17 responses. Nat Immunol 9(6):650–657PubMedCrossRefGoogle Scholar
  12. 12.
    Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352PubMedCrossRefGoogle Scholar
  13. 13.
    Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467PubMedCrossRefGoogle Scholar
  14. 14.
    Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M et al (2009) Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113(26):6611–6618PubMedCrossRefGoogle Scholar
  15. 15.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRefGoogle Scholar
  16. 16.
    Honda K, Takeda K (2009) Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol 2(3):187–196PubMedCrossRefGoogle Scholar
  17. 17.
    Nistala K, Adams S, Cambrook H, Ursu S, Olivito B, de Jager W et al (2010) Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci USA 107(33):14751–14756PubMedCrossRefGoogle Scholar
  18. 18.
    Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F et al (2010) Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 125(1):222–230PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarzenberger P, Huang W, Ye P, Oliver P, Manuel M, Zhang Z et al (2000) Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol 164:4783–4789PubMedGoogle Scholar
  20. 20.
    Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y et al (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 205(4):799–810PubMedCrossRefGoogle Scholar
  21. 21.
    Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541PubMedCrossRefGoogle Scholar
  22. 22.
    Bending D, De La Peña H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Investig 119:565–572PubMedCrossRefGoogle Scholar
  23. 23.
    Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39(1):216–224PubMedCrossRefGoogle Scholar
  24. 24.
    Miossec P (2009) IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 11(5):625–630PubMedCrossRefGoogle Scholar
  25. 25.
    Kunz M, Ibrahim SM (2009) Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators Inflamm 979258, pp 20Google Scholar
  26. 26.
    Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H et al (2000) High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 164(5):2832–2838PubMedGoogle Scholar
  27. 27.
    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682PubMedCrossRefGoogle Scholar
  28. 28.
    Andersson MK, Lundberg P, Ohlin A, Perry MJ, Lie A, Stark A et al (2007) Effects on osteoclast and osteoblast activities in cultured mouse calvarial bones by synovial fluids from patients with a loose joint prosthesis and from osteoarthritis patients. Arthritis Res Ther 9:R18PubMedCrossRefGoogle Scholar
  29. 29.
    Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS et al (2006) Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two year prospective study (the DAMAGE study cohort). Arthritis Rheum 54:1122–1131PubMedCrossRefGoogle Scholar
  30. 30.
    Peck A, Mellins ED (2009) Breaking old paradigms: Th17 cells in autoimmune arthritis. Clin Immunol 132(3):295–304PubMedCrossRefGoogle Scholar
  31. 31.
    Wiekowski MT, Leach MW, Evans EW, Sullivan L, Chen SC, Vassileva G et al (2001) Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 166:7563–7570PubMedGoogle Scholar
  32. 32.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRefGoogle Scholar
  33. 33.
    Crispin JC, Kyttaris VC, Juang YT, Tsokos GC (2008) How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol 29:110–115PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen RA, Bayliss G, Crispin JC, Kane-Wanger GF, Van Beek CA, Kyttaris VC et al (2008) T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clin Immunol 128(1):1–7PubMedCrossRefGoogle Scholar
  35. 35.
    Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW (2008) Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 127:385–393PubMedCrossRefGoogle Scholar
  36. 36.
    Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE et al (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761–8766PubMedGoogle Scholar
  37. 37.
    Zhang Z, Kyttaris VC, Tsokos GC (2009) The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 183(5):3160316–3160319Google Scholar
  38. 38.
    Ludwig RJ, Herzog C, Rostock A, Ochsendorf FR, Zollner TM, Thaci D et al (2007) Psoriasis: a possible risk factor for development of coronary artery calcification. Br J Dermatol 156(2):271–276PubMedCrossRefGoogle Scholar
  39. 39.
    Ortonne JP (2008) Psoriasis, metabolic syndrome and its components. Ann Dermatol Venereol 135(Suppl 4):S235–S242PubMedCrossRefGoogle Scholar
  40. 40.
    Vaknin-Dembinsky A, Balashov K, Weiner HL (2006) IL-23 is increased in dendritic cells in multiple sclerosis and downregulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176(12):7768–7774PubMedGoogle Scholar
  41. 41.
    Bennett JL, Stüve O (2009) Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol 32(3):121–132PubMedCrossRefGoogle Scholar
  42. 42.
    Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58(8):1152–1167PubMedCrossRefGoogle Scholar
  43. 43.
    Yagi Y, Andoh A, Inatomi O, Tsujikawa T, Fujiyama Y (2007) Inflammatory responses induced by interleukin-17 family members in human colonic subepithelial myofibroblasts. J Gastroenterol 42:746–753PubMedCrossRefGoogle Scholar
  44. 44.
    Izcue A, Hue S, Buonocore S, Arancibia-Cárcamo CV, Ahern PP, Iwakura Y et al (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28(4):559–570PubMedCrossRefGoogle Scholar
  45. 45.
    Dambacher J, Beigel F, Zitzmann K, De Toni EN, Göke B, Diepolder HM et al (2009) The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 58(9):1207–1217PubMedCrossRefGoogle Scholar
  46. 46.
    Ciprandi G, Filaci G, Battaglia F, Fenoglio D (2010) Peripheral Th-17 cells in allergic rhinitis: new evidence. Int Immunopharmacol 10(2):226–229PubMedCrossRefGoogle Scholar
  47. 47.
    Robinson DS (2009) Regulatory T cells and asthma. Clin Exp Allergy 39(9):1314–1323PubMedCrossRefGoogle Scholar
  48. 48.
    Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K et al (2010) Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol 11(10):928–935PubMedCrossRefGoogle Scholar
  49. 49.
    Romagnani S (2006) Immunological tolerance and autoimmunity. Intern Emerg Med 1(3):187–196PubMedCrossRefGoogle Scholar

Copyright information

© SIMI 2011

Authors and Affiliations

  • Giuseppe Murdaca
    • 1
  • Barbara Maria Colombo
    • 1
  • Francesco Puppo
    • 1
  1. 1.Department of Internal Medicine, DIMIUniversity of GenoaGenoaItaly

Personalised recommendations