Internal and Emergency Medicine

, Volume 4, Issue 5, pp 389–401

Soluble forms of RAGE in internal medicine

  • Natale Vazzana
  • Francesca Santilli
  • Chiara Cuccurullo
  • Giovanni Davì
IM - Review

Abstract

The receptor for advanced glycation end-products (RAGE) and its ligands are intimately involved in the pathobiology of a wide range of diseases that share common features, such as enhanced oxidative stress, immune/inflammatory responses, and altered cell functions. Soluble forms of RAGE (sRAGE), including the splice variant endogenous secretory (es)RAGE, have been found circulating in plasma and tissues. Experimental data suggest that these isoforms may neutralize the ligand-mediated damage by acting as a decoy. Moreover, evidence is mounting to support a role for both sRAGE and esRAGE as biomarkers or endogenous protection factors against RAGE-mediated pathogenesis. In this review, we will focus on clinical and therapeutical implications arising from studies investigating the significance of soluble RAGE isoforms in several clinical settings, including cardiovascular disease, diabetes mellitus, hypercholesterolemia, chronic renal failure, immune/inflammatory diseases, pulmonary diseases, neurodegeneration, and cancer.

Keywords

Atherothrombosis Biomarkers Diabetes mellitus Endogenous secretory RAGE Inflammation Oxidative stress Soluble RAGE 

References

  1. 1.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955PubMedGoogle Scholar
  4. 4.
    Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105:816–822PubMedCrossRefGoogle Scholar
  5. 5.
    Santilli F, Vazzana N, Bucciarelli LG, Davì G (2009) Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem 16:940–952PubMedCrossRefGoogle Scholar
  6. 6.
    Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835PubMedCrossRefGoogle Scholar
  7. 7.
    Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R (2006) Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation 113:1226–1234PubMedCrossRefGoogle Scholar
  8. 8.
    Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase A Disintegrin And Metalloprotease 10 (ADAM10). FASEB J 22:3716–3727PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang L, Bukulin M, Kojro E, Roth A, Metz VV, Fahrenholz F, Nawroth PP, Bierhaus A, Postina R (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516PubMedCrossRefGoogle Scholar
  10. 10.
    Parkin E, Harris B (2009) A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J Neurochem 108:1464–1479PubMedCrossRefGoogle Scholar
  11. 11.
    Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5PubMedCrossRefGoogle Scholar
  12. 12.
    Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Grant PJ, Schmidt AM (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22:1572–1580PubMedCrossRefGoogle Scholar
  13. 13.
    Forbes JM, Thorpe SR, Thallas-Bonke V, Pete J, Thomas MC, Deemer ER, Bassal S, El-Osta A, Long DM, Panagiotopoulos S, Jerums G, Osicka TM, Cooper ME (2005) Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. J Am Soc Nephrol 16:2363–2372PubMedCrossRefGoogle Scholar
  14. 14.
    Yamamoto Y, Miura J, Sakurai S, Watanabe T, Yonekura H, Tamei H, Matsuki H, Obata K, Uchigata Y, Iwamoto Y, Koyama H, Yamamoto H (2007) Assaying soluble forms of receptor for advanced glycation end products. Arterioscler Thromb Vasc Biol 27:e33CrossRefGoogle Scholar
  15. 15.
    Ramasamy R, Yan SF, Herold K, Clynes R, Schmidt AM (2008) Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann N Y Acad Sci 1126:7–13PubMedCrossRefGoogle Scholar
  16. 16.
    Falcone C, Emanuele E, D’Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D (2005) Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037PubMedCrossRefGoogle Scholar
  17. 17.
    Lindsey JB, de Lemos JA, Cipollone F, Ayers CR, Rohatgi A, Morrow DA, Khera A and McGuire DK (2009) Association between circulating soluble receptor for advanced glycation end products (sRAGE) and atherosclerosis: observations from the Dallas Heart Study. Diabetes Care 32:1218–1220Google Scholar
  18. 18.
    Catalano M, Cortelazzo A, Santi R, Contino L, Demicheli M, Yilmaz Y, Zorzetto M, Campo I, Lanati N, Emanuele E (2008) The Pro12Ala polymorphism of peroxisome proliferator-activated receptor-gamma2 gene is associated with plasma levels of soluble RAGE (Receptor for Advanced Glycation Endproducts) and the presence of peripheral arterial disease. Clin Biochem 41:981–985PubMedCrossRefGoogle Scholar
  19. 19.
    Lu L, Jin Pu L, Chen QJ, Wang L, Peng W, Yan X, Zhang Q, Yan Zhang R, Gong PH, Qiu JP, Shen WF (2008) Increased glycated albumin and decreased esRAGE concentrations are associated with in-stent restenosis in Chinese diabetic patients. Clin Chim Acta 396:33–37PubMedCrossRefGoogle Scholar
  20. 20.
    Montaner J, Perea-Gainza M, Delgado P, Ribo M, Chacon P, Rosell A, Quintana M, Palacios ME, Molina CA, Alvarez-Sabin J (2008) Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke 39:2280–2287PubMedCrossRefGoogle Scholar
  21. 21.
    Emanuele E, D’Angelo A, Tomaino C, Binetti G, Ghidoni R, Politi P, Bernardi L, Maletta R, Bruni AC, Geroldi D (2005) Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 62:1734–1736PubMedCrossRefGoogle Scholar
  22. 22.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Yasuda T, Yamasaki Y (2008) Endogenous secretory RAGE but not soluble RAGE is associated with carotid atherosclerosis in type 1 diabetes patients. Diab Vasc Dis Res 5:190–197PubMedCrossRefGoogle Scholar
  23. 23.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Yasuda T, Umayahara Y, Kosugi K and Yamasaki Y (2008) Serum endogenous secretory RAGE level is an independent risk factor for the progression of carotid atherosclerosis in type 1 diabetes. Atherosclerosis 204:288–292Google Scholar
  24. 24.
    Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Tamei H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593PubMedCrossRefGoogle Scholar
  25. 25.
    Katakami N, Matsuhisa M, Kaneto H, Yamasaki Y (2007) Serum endogenous secretory RAGE levels are inversely associated with carotid IMT in type 2 diabetic patients. Atherosclerosis 190:22–23PubMedCrossRefGoogle Scholar
  26. 26.
    Hudson BI, Harja E, Moser B, Schmidt AM (2005) Soluble levels of receptor for advanced glycation endproducts (sRAGE) and coronary artery disease: the next C-reactive protein? Arterioscler Thromb Vasc Biol 25:879–882PubMedCrossRefGoogle Scholar
  27. 27.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589PubMedCrossRefGoogle Scholar
  28. 28.
    Dluhy RG, McMahon GT (2008) Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 358:2630–2633PubMedCrossRefGoogle Scholar
  29. 29.
    Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559PubMedCrossRefGoogle Scholar
  30. 30.
    Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572PubMedCrossRefGoogle Scholar
  31. 31.
    Basta G, Sironi AM, Lazzerini G, Del Turco S, Buzzigoli E, Casolaro A, Natali A, Ferrannini E, Gastaldelli A (2006) Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein. J Clin Endocrinol Metab 91:4628–4634PubMedCrossRefGoogle Scholar
  32. 32.
    Devangelio E, Santilli F, Formoso G, Ferroni P, Bucciarelli L, Michetti N, Clissa C, Ciabattoni G, Consoli A, Davì G (2007) Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med 43:511–518PubMedCrossRefGoogle Scholar
  33. 33.
    Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494PubMedCrossRefGoogle Scholar
  34. 34.
    Geroldi D, Falcone C, Emanuele E, D’Angelo A, Calcagnino M, Buzzi MP, Scioli GA, Fogari R (2005) Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 23:1725–1729PubMedCrossRefGoogle Scholar
  35. 35.
    Norata GD, Garlaschelli K, Grigore L, Tibolla G, Raselli S, Redaelli L, Buccianti G, Catapano AL (2009) Circulating soluble receptor for advanced glycation end products is inversely associated with body mass index and waist/hip ratio in the general population. Nutr Metab Cardiovasc Dis 19:129–134PubMedCrossRefGoogle Scholar
  36. 36.
    Yilmaz Y, Ulukaya E, Gul OO, Arabul M, Gul CB, Atug O, Oral AY, Aker S and Dolar E (2009) Decreased plasma levels of soluble receptor for advanced glycation endproducts (sRAGE) in patients with nonalcoholic fatty liver disease. Clin Biochem 42(9):802–807Google Scholar
  37. 37.
    Santilli F, Bucciarelli L, Noto D, Cefalu AB, Davi V, Ferrante E, Pettinella C, Averna MR, Ciabattoni G, Davì G (2007) Decreased plasma soluble RAGE in patients with hypercholesterolemia: effects of statins. Free Radic Biol Med 43:1255–1262PubMedCrossRefGoogle Scholar
  38. 38.
    Hudson BI, Wendt T, Bucciarelli LG, Rong LL, Naka Y, Yan SF, Schmidt AM (2005) Diabetic vascular disease: it’s all the RAGE. Antioxid Redox Signal 7:1588–1600PubMedCrossRefGoogle Scholar
  39. 39.
    Grossin N, Wautier MP, Meas T, Guillausseau PJ, Massin P, Wautier JL (2008) Severity of diabetic microvascular complications is associated with a low soluble RAGE level. Diabetes Metab 34:392–395PubMedCrossRefGoogle Scholar
  40. 40.
    Koyama H, Yamamoto H, Nishizawa Y (2007) RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med 13:625–635PubMedCrossRefGoogle Scholar
  41. 41.
    Humpert PM, Papadopoulos G, Schaefer K, Djuric Z, Konrade I, Morcos M, Nawroth PP, Bierhaus A (2007) sRAGE and esRAGE are not associated with peripheral or autonomic neuropathy in type 2 diabetes. Horm Metab Res 39:899–902PubMedCrossRefGoogle Scholar
  42. 42.
    Semba RD, Ferrucci L, Fink JC, Sun K, Beck J, Dalal M, Guralnik JM, Fried LP (2009) Advanced glycation end products and their circulating receptors and level of kidney function in older community-dwelling women. Am J Kidney Dis 53:51–58PubMedCrossRefGoogle Scholar
  43. 43.
    Nin JW, Ferreira I, Schalkwijk CG, Prins MH, Chaturvedi N, Fuller JH, Stehouwer CD (2009) Levels of soluble receptor for AGE are cross-sectionally associated with cardiovascular disease in type 1 diabetes, and this association is partially mediated by endothelial and renal dysfunction and by low-grade inflammation: the EURODIAB Prospective Complications Study. Diabetologia 52:705–714PubMedCrossRefGoogle Scholar
  44. 44.
    Koyama H, Shoji T, Fukumoto S, Shinohara K, Emoto M, Mori K, Tahara H, Ishimura E, Kakiya R, Tabata T, Yamamoto H, Nishizawa Y (2007) Low circulating endogenous secretory receptor for AGEs predicts cardiovascular mortality in patients with end-stage renal disease. Arterioscler Thromb Vasc Biol 27:147–153PubMedCrossRefGoogle Scholar
  45. 45.
    Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, Lalla E, Chitnis S, Monteiro J, Stickland MH, Bucciarelli LG, Moser B, Moxley G, Itescu S, Grant PJ, Gregersen PK, Stern DM, Schmidt AM (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135PubMedCrossRefGoogle Scholar
  46. 46.
    Pullerits R, Bokarewa M, Dahlberg L, Tarkowski A (2005) Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res Ther 7:R817–R824PubMedCrossRefGoogle Scholar
  47. 47.
    Chen YS, Yan W, Geczy CL, Brown MA, Thomas R (2009) Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis. Arthritis Res Ther 11:R39PubMedCrossRefGoogle Scholar
  48. 48.
    Leach ST, Yang Z, Messina I, Song C, Geczy CL, Cunningham AM, Day AS (2007) Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastroenterol 42:1321–1331PubMedCrossRefGoogle Scholar
  49. 49.
    Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, Qu W, Lalla E, Lerner S, Chen Y, Yan SS, D’Agati V, Naka Y, Ramasamy R, Herold K, Yan SF, Schmidt AM (2005) Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 1043:553–561PubMedCrossRefGoogle Scholar
  50. 50.
    Chen X, Walker DG, Schmidt AM, Arancio O, Lue LF, Yan SD (2007) RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Curr Mol Med 7:735–742PubMedCrossRefGoogle Scholar
  51. 51.
    Ghidoni R, Benussi L, Glionna M, Franzoni M, Geroldi D, Emanuele E, Binetti G (2008) Decreased plasma levels of soluble receptor for advanced glycation end products in mild cognitive impairment. J Neural Transm 115:1047–1050PubMedCrossRefGoogle Scholar
  52. 52.
    Sternberg Z, Weinstock-Guttman B, Hojnacki D, Zamboni P, Zivadinov R, Chadha K, Lieberman A, Kazim L, Drake A, Rocco P, Grazioli E, Munschauer F (2008) Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult Scler 14:759–763PubMedCrossRefGoogle Scholar
  53. 53.
    Ilzecka J (2008) Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 120:119–122Google Scholar
  54. 54.
    Logsdon CD, Fuentes MK, Huang EH, Arumugam T (2007) RAGE and RAGE ligands in cancer. Curr Mol Med 7:777–789PubMedCrossRefGoogle Scholar
  55. 55.
    Abe R, Yamagishi S (2008) AGE-RAGE system and carcinogenesis. Curr Pharm Des 14:940–945PubMedCrossRefGoogle Scholar
  56. 56.
    Tesarova P, Kalousova M, Jachymova M, Mestek O, Petruzelka L, Zima T (2007) Receptor for advanced glycation end products (RAGE)—soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 25:720–725PubMedCrossRefGoogle Scholar
  57. 57.
    Jang Y, Kim JY, Kang SM, Kim JS, Chae JS, Kim OY, Koh SJ, Lee HC, Ahn CW, Song YD, Lee JH (2007) Association of the Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating levels of soluble RAGE and inflammatory markers in nondiabetic and nonobese Koreans. Metabolism 56:199–205PubMedCrossRefGoogle Scholar
  58. 58.
    Gu H, Yang L, Sun Q, Zhou B, Tang N, Cong R, Zeng Y, Wang B (2008) Gly82Ser polymorphism of the receptor for advanced glycation end products is associated with an increased risk of gastric cancer in a Chinese population. Clin Cancer Res 14:3627–3632PubMedCrossRefGoogle Scholar
  59. 59.
    Mukherjee TK, Mukhopadhyay S, Hoidal JR (2008) Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol 162:210–215PubMedCrossRefGoogle Scholar
  60. 60.
    van Zoelen MA, Schouten M, de Vos AF, Florquin S, Meijers JC, Nawroth PP, Bierhaus A, van der Poll T (2009) The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J Immunol 182:4349–4356PubMedCrossRefGoogle Scholar
  61. 61.
    Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, Mednick G, Matthay ZA, Matthay MA (2006) Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 173:1008–1015PubMedCrossRefGoogle Scholar
  62. 62.
    Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA (2008) Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 12:201PubMedCrossRefGoogle Scholar
  63. 63.
    Hudson BI, Schmidt AM (2004) RAGE: a novel target for drug intervention in diabetic vascular disease. Pharm Res 21:1079–1086PubMedCrossRefGoogle Scholar
  64. 64.
    Kalousova M, Germanova A, Jachymova M, Mestek O, Tesar V, Zima T (2008) A419C (E111A) polymorphism of the glyoxalase I gene and vascular complications in chronic hemodialysis patients. Ann N Y Acad Sci 1126:268–271PubMedCrossRefGoogle Scholar
  65. 65.
    Sullivan CM, Futers TS, Barrett JH, Hudson BI, Freeman MS, Grant PJ (2005) RAGE polymorphisms and the heritability of insulin resistance: the Leeds family study. Diab Vasc Dis Res 2:42–44PubMedCrossRefGoogle Scholar
  66. 66.
    Zee RY, Romero JR, Gould JL, Ricupero DA, Ridker PM (2006) Polymorphisms in the advanced glycosylation end product-specific receptor gene and risk of incident myocardial infarction or ischemic stroke. Stroke 37:1686–1690PubMedCrossRefGoogle Scholar
  67. 67.
    Hudson BI, Stickland MH, Futers TS, Grant PJ (2001) Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50:1505–1511PubMedCrossRefGoogle Scholar
  68. 68.
    Falcone C, Geroldi D, Buzzi MP, Emanuele E, Yilmaz Y, Fontana JM, Vignali L, Boiocchi C, Sbarsi I, Cuccia M (2008) The −374T/A RAGE polymorphism protects against future cardiac events in nondiabetic patients with coronary artery disease. Arch Med Res 39:320–325PubMedCrossRefGoogle Scholar
  69. 69.
    Pettersson-Fernholm K, Forsblom C, Hudson BI, Perola M, Grant PJ, Groop PH, Finn-Diane Study Group (2003) The functional −374 T/A RAGE gene polymorphism is associated with proteinuria and cardiovascular disease in type 1 diabetic patients. Diabetes 52:891–894PubMedCrossRefGoogle Scholar
  70. 70.
    Kim OY, Jo SH, Jang Y, Chae JS, Kim JY, Hyun YJ, Lee JH (2009) G allele at RAGE SNP82 is associated with proinflammatory markers in obese subjects. Nutr Res 29:106–113CrossRefGoogle Scholar
  71. 71.
    Prevost G, Fajardy I, Besmond C, Balkau B, Tichet J, Fontaine P, Danze PM, Marre M, Genediab and D.E.S.I.R studies (2005) Polymorphisms of the receptor of advanced glycation endproducts (RAGE) and the development of nephropathy in type 1 diabetic patients. Diabetes Metab 31:35–39PubMedCrossRefGoogle Scholar

Copyright information

© SIMI 2009

Authors and Affiliations

  • Natale Vazzana
    • 1
  • Francesca Santilli
    • 1
  • Chiara Cuccurullo
    • 1
  • Giovanni Davì
    • 1
  1. 1.Center of Excellence on Aging“G. d’Annunzio” University FoundationChietiItaly

Personalised recommendations