Acta Physiologiae Plantarum

, Volume 21, Issue 4, pp 335–340

Effect of calcium restriction on cardenolide accumulation in two cell lines of Digitalis thapsi grown under different light regimes

  • Margarita Cacho
  • Margarita Morán
  • Purificación Corchete
  • Jorge Fernández-Tárrago
Article
  • 52 Downloads

Abstract

The effect of calcium-deprivation on growth and the production of cardenolides in two undifferentiated cell lines of Digitalis thapsi maintained under three different light regimes (16 h photoperiod, darkness, or continuous light) was investigated. Growth was stimulated by continuous light in both cell lines cultured in complete medium. The light regime did not affect cardenolide accumulation in the cells of the hypocotyl-derived line; by contrast, continuous light or darkness increased the production in the leaf-derived line. The elimination of calcium favoured cardenolide production independently of the origin of the suspensions and the light regime, this beneficial effect being predominantly manifested under continuous light.

Key words

Digitalis thapsi cardenolide suspension cultures cell lines light regimes calcium radioimmunoassay 

List of abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

BA

N6-benzyladenine

EGTA

ethyleneglycol-bis-(ß-aminoethyl ether)-N,N′-tetraacetic acid

FW

fresh weight

MS

Murashige and Skoog (1962)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brugidou C., Jacques M., Cosson L., Jarreau F.X., Ogerau T. 1988. Growth and digoxin content in Digitalis lanata in controlled conditions and natural environment. Planta Med. 54: 262–265.PubMedCrossRefGoogle Scholar
  2. Cacho M., Morán M., Fernández-Tárrago J., Corchete M.P. 1995. Calcium restriction induces cardenolide accumulation in cell suspension cultures of Digitalis thapsi L. Plant Cell Reports. 14: 786–789.CrossRefGoogle Scholar
  3. Corchete M.P., Sánchez J.M., Cacho M., Morán M., Fernández-Tárrago J. 1990. Cardenolide content in suspension cell cultures derived from root and leaf callus of Digitalis thapsi L. J. Plant Physiol. 137: 196–200.Google Scholar
  4. Corchete M.P., Jimenez M.A., Morán M., Cacho M., Fernández-Tárrago J. 1991. Effect of calcium, manganese and lithium on growth and cardenolide content in cell suspension cultures of Digitalis thapsi L. Plant Cell Reports. 10: 394–396.CrossRefGoogle Scholar
  5. Garve R., Luckner M., Vogel E., Tewes A., Nover L. 1980. Growth, morphogenesis and cardenolide formation in long-term cultures of Digitalis lanata. Planta Med. 40: 92–103.Google Scholar
  6. Hagimori M., Matsumoto T., Kisaki T. 1980. Studies on the production of Digitalis cardenolides by plant tissue culture I. Determination of digitoxin and digoxin contents in first and second passage calli and organ redifferentiating calli of several Digitalis species by radioimmunoassay. Plant and Cell Physiol. 21: 1391–1404.Google Scholar
  7. Hagimori M., Matsumoto T., Obi Y. 1982. Studies on the production of Digitalis by plant tissue culture II: Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol. 69: 653–656.PubMedGoogle Scholar
  8. Hagimori M., Matsumoto T., Obi Y. 1983. Effects of mineral salts, initial pH and precursors of digitoxin formation by shoot-forming cultures of Digitalis purpurea L. Agric. Biol. Chem. 47: 565–571.Google Scholar
  9. Indrayanto G., Rahayu L., Rahman A., Noeraeni P.E. 1993. Effect of calcium, strontium and magnesium ions on the formation of phytosteroids in callus cultures of Agave amaniensis. Planta Med. 59: 97–98.PubMedCrossRefGoogle Scholar
  10. Kuberski Ch., Scheibner H., Steup C., Dierrich B., Luckner M. 1984. Embryogenesis and cardenolide formation in tissue cultures of Digitalis lanata. Phytochemistry. 23: 1407–1412.CrossRefGoogle Scholar
  11. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.CrossRefGoogle Scholar
  12. Ohlsson A.B., Björk L., Gatenbeck S. 1983. Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry. 22: 2447–2450.CrossRefGoogle Scholar
  13. Ohlsson A.B., Björk L. 1988. Effects of gibberellic acid on cardenolide accumulation by Digitalis lanata tissue cultures grown in light and darkness. J. Plant Physiol. 133: 535–538.Google Scholar
  14. Ohlsson A.B., Berglund T. 1989. Effects of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J. Plant Physiol. 135: 505–507.Google Scholar
  15. Pradel H., Dumke-Lehmann U., Diettrich B., Luckner M. 1997. Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J. Plant Physiol. 151: 209–215.Google Scholar
  16. Scheibner H., Björk L., Schulz U., Diettrich B., Luckner M. 1987. Influence of light on cardenolide accumulation in somatic embryos of Digitalis lanata. J. Plant Physiol. 130: 211–219.Google Scholar
  17. Scheibner H., Björk L., Schulz U., Neumann D., Diettrich B., Luckner M. 1989. The influence of inhibitors of chloroplast differentiation of chorophyll and cardenolide accumulation in somatic embryos of Digitalis lanata. Biochem. Physiol. Pflanzen. 184: 63–67.Google Scholar
  18. Schübel H., Ruyter C.M., Stöckigt J. 1989. Improved production of raucaffricine by cultivated Rauwolfia cells. Phytochemistry. 28: 491–494.CrossRefGoogle Scholar
  19. Sierra M.I., Dagnino D., Van der Heijden R., Verpoorte R. 1991. Influence of calcium on peroxidase activity and alkaloid formation in Tabernaemontana divaricata cell suspension cultures. In: Lobarzewski J.; Greppin H.; Penel C.; Gaspar Th. (eds.): Biochemical, Molecular and Physiological Aspects of Plant Peroxidases, pp. 295–304. University of Geneva, Geneva, Switzerland.Google Scholar
  20. Stuhlemmer U., Kreis W., Eisenbeiss M., Reinhard E. 1993. Cardiac glycosides in partly submerged shoots of Digitalis lanata. Planta Med. 59: 539–545.PubMedCrossRefGoogle Scholar
  21. Zook M.N., Rush J.S., Kuc J.A. 1987. A role for Ca2+ in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol. 84: 520–525.PubMedCrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 1999

Authors and Affiliations

  • Margarita Cacho
    • 1
  • Margarita Morán
    • 1
  • Purificación Corchete
    • 1
  • Jorge Fernández-Tárrago
    • 1
  1. 1.Departamento de Fisiología Vegetal, Facultad de FarmaciaUniversidad de Salamanca, Campus Miguel de UnamunoSalamancaSpain

Personalised recommendations