Acta Physiologiae Plantarum

, Volume 20, Issue 3, pp 229–233 | Cite as

Chromatographic properties of the cadmium induced SOD isoform in Rhizopogon roseolus

  • Zbigniew Miszalski
  • Ewa Niewiadomska
  • Andrzej Skoczowski
  • Bernard Botton


Exposure of Rhizopogon roseolus mycelia to 15 mmol·dm−3 cadmium for 24 h induces a different pattern of Mn-SOD on polyacrylamide gels, probably being a changed form of an originally existing one. The presence of cadmium affects the chromatographic properties of this enzyme and its mobility through the acrylamide gel. This new isoform was purified using DEAE Trisacryl chromatography. Cadmium induced isoform adsorbed stronger to the ligands and was eluated with a Tris-HCl buffer containing 0.1 mol·dm−3 NaCl. SOD from control samples (not treated with cadmium) was eluated with the same buffer without NaCl.


cadmium SOD Rhizopogon roseolus 

List of abbreviations




nitro blue tetrazolium


polyacrylamide gel electrophoresis


superoxide dismutase []


(N,N,N,N,′-tetramethylethylene-diamine), Tris-tris(hydroxymethyl)aminomethane


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer R., Bjerrum M.J., Danielsen E. and Kofod P. 1991. Coordination geometry of cadmium at the zinc and copper sites of superoxide dismutases: A study using perturbed angular correlation of γ-rays from excited 111Cd. Acta Chem. Scandinav., 45: 593–603.CrossRefGoogle Scholar
  2. Beauchamp Ch. and Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44: 276–287.CrossRefPubMedGoogle Scholar
  3. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–255.CrossRefPubMedGoogle Scholar
  4. Daza M.C., Sandalio L.M., Quijano-Rico M. and del Rio, L.A. 1993. Isoenzyme pattern of superoxide dismutase in coffee leaves from cultivars susceptible and resistant to the rust Hemileia vastatrix. J. Plant Physiol., 141: 521–526.CrossRefGoogle Scholar
  5. Elstner E.F. and Heupel A. 1976. Inhibition of nitrate formation from hydrolamonium chloride. A simple assay for superoxide dismutase. Anal. Biochem., 70: 616–620.CrossRefPubMedGoogle Scholar
  6. Høiland K. 1993. Pollution, a great disaster to micorrhiza? Agarica, 12: 65–88.Google Scholar
  7. Hussain T., Shukla G.S. and Chandra S.V. 1987. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacol. Toxicol., 60: 355–358.CrossRefPubMedGoogle Scholar
  8. Kottke I., Guttenberger M., Hampp R. and Oberwinkler F. 1987. An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees, 1: 191–194.CrossRefGoogle Scholar
  9. Miszalski Z., Botton B. and Turnau K. 1996. New SOD isoform in Rhizopogon roseolus (Corda in Sturm) in the presence of cadmium. Acta Physiol., Plant., 18: 129–134.Google Scholar
  10. Przymusiński R., Rucińska R., and Gwóźdź E.A. 1995. The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytozolic Cu:Zn-Superoxide dismutase. Environ. Exp. Bot., 35: 485–495.CrossRefGoogle Scholar
  11. Scandalios J.G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol., 101: 7–12.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Somashekaraiah B.V., Padmaja K. and Prasad A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant., 85: 85–89.CrossRefGoogle Scholar
  13. Srivastava A. and Tel-Or E. 1992. Antioxidative enzymatic response of Lemna to environmental pollutants. J. Environm. Sci. Health, 27: 261–272.Google Scholar
  14. Stroiński A. and Kozłowska M. 1997. Cadmium-induced oxidative stress in potato tuber. Acta Soc. Bot. Pol. 66: 189–195.CrossRefGoogle Scholar
  15. Turnau K., Kottke I. and Oberwinkler F. 1993. Element localization in Paxillus involutus — Pinus sylvestris mycorrhizas using electron energy loss spectroscopy and imaging. Bot. Acta, 106: 245–249.CrossRefGoogle Scholar
  16. Turnau K., Kottke I. and Dexheimer J. 1996. Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calcamine dumps. Mycol. Res. 100: 16–22.CrossRefGoogle Scholar
  17. Weissenhorn I., Leyval C. and Berthelin J. 1993. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil, 157: 247–256.CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 1998

Authors and Affiliations

  • Zbigniew Miszalski
    • 1
  • Ewa Niewiadomska
    • 1
  • Andrzej Skoczowski
    • 2
  • Bernard Botton
    • 3
  1. 1.The Franciszek Górski Department of Plant PhysiologyPolish Academy of SciencesCracowPoland
  2. 2.The Franciszek Górski Department of Plant PhysiologyPolish Academy of SciencesCracowPoland
  3. 3.Laboratoire de Biologie Forestière, associè INRAUniversité Henri Poincaré Nancy IVandoeuvre-les-Nancy CedexFrance

Personalised recommendations