Advertisement

Acta Physiologiae Plantarum

, Volume 19, Issue 4, pp 505–515 | Cite as

Acclimation to freezing temperatures in perennial ryegrass (Lolium perenne)

  • Judith Harrison
  • Claire Tonkinson
  • Colin Eagles
  • Christine Foyer
Low Temperature Stress

Abstract

The increasing demands being placed on natural grasslands in the era following the appearance of Bovine Spongiform Encephalitis require that forage crops provide a reliable extended season of growth, combined with good winter survival to ensure sward longevity. The ability to tolerate sub-zero temperatures is integral to the survival of perennial forages. Since the development of freezing tolerance is crucial to the survival and productivity of over-wintering crops, forage breeding programmes require an improved understanding of the individual characteristics that contribute to tolerance to sub-zero temperatures. Photosynthesis, carbohydrate content and changes in protein composition were investigated in two varieties of Lolium perenne which differ in their response to growth at low temperature.

Key words

Carbohydrates Freezing Lolium perenne Photosynthesis Proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BioRad Laboratories 1989. Protean II xi Slab Cell Instruction Manual.Google Scholar
  2. Cloutier Y. 1983. Changes in the electrophoretic patterns of the soluble proteins of winter wheat and rye following cold acclimation and desiccation stress. Plant Physiol., 71: 400–403.PubMedGoogle Scholar
  3. Cloutier Y. 1984. Changes in protein patterns in winter rye following cold application and desiccation stress. Can. J. Bot., 62: 366–371.Google Scholar
  4. Eagles C.F. 1967. The effect of temperature on vegetative growth in climatic races of Dactylis glomerata in controlled environments. Ann. Bot., 31: 31–39.Google Scholar
  5. Eagles C.F., Williams J., De Villiers L. 1993. Recovery after freezing in Avena sativa L., Lolium perenne L. and L. multiflorum Lam. New Phytol., 123: 477–483.CrossRefGoogle Scholar
  6. Fuller M.P., Eagles C.F. 1978. A seedling test for cold hardiness in Lolium perenne L. J. Agri. Sci., 91: 217–222.Google Scholar
  7. Gilmour S.J., Hajela R.K., Thomashow M.F. 1988. Cold acclimation in Arabidopsis thaliana. Plant Physiol., 87: 745–750.PubMedGoogle Scholar
  8. Guy C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol., 41: 187–223.Google Scholar
  9. Hendry G. 1987. The ecological significance of fructan in a contemporary flora. New Phytol., 106: 201–216.CrossRefGoogle Scholar
  10. Hughes M.A., Pearce R.S. 1988. Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J. Exp. Bot., 39: 1461–1467.CrossRefGoogle Scholar
  11. Huner N.P.A., Oqvist G., Hurry V.M., Krol M., Falk S., Griffith. M. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynthesis Res., 37: 19–39.CrossRefGoogle Scholar
  12. Jermyn M.A. 1956. A new method for the determination of ketohexoses in the presence of aldohexoses. Nature, London, 177: 38.CrossRefGoogle Scholar
  13. Kacperska-Palacz A., Długokęcka E., Breitenwald J., Wciślińska B. 1977. Physiological mechanisms of frost tolerance: possible role of protein in plant adaptation to cold. Biol. Plan., 19: 10–17.CrossRefGoogle Scholar
  14. Lowes W., Dunn M.A., Foyer C., Hughes M.A. 1997. Analysis of frost acclimation in Lolium perenne by differential display. J. Exp. Bot., 48 sup: 50–51.Google Scholar
  15. Mae T., Thomas H., Gay A.P., Matin A., Hidema J. 1993. Leaf development in Lolium temulentum: photosynthesis and photosynthetic proteins in leaves senescing under different irradiances. Plant Cell Physiol., 34: 391–399.Google Scholar
  16. Mohapatra S.S., Poole R.J., Dhindsa R.S. 1987a. Cold acclimation, freezing resistance and protein synthesis in alfalfa (Medicago sativa L. Saranac). J. Exp. Bot., 38: 1697–1703.CrossRefGoogle Scholar
  17. Mohapatra S.S., Poole R.J., Dhindsa R.S. 1987b. Changes in protein patterns and translatable messenger RNA population during cold acclimation of alfalfa. Plant Physiol., 84: 1172–1176.PubMedGoogle Scholar
  18. Mohapatra S.S., Poole R.J., Dhindsa R.S. 1988. Alterations in membrane profile during cold treatment of alfalfa. Plant Physiol., 86: 1005–1007.PubMedGoogle Scholar
  19. Oakley B.R., Kirsh D.R., Morris N.R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem., 105: 361–363.PubMedCrossRefGoogle Scholar
  20. O’Farrell P.H. 1975. High resolution two dimensional gel electrophoresis of proteins. J. Biol. Chem., 250: 4007–4021.PubMedGoogle Scholar
  21. O’Farrell P.Z., Goodman H.M., O’Farrell P.H. 1977. High resolution two dimensional electrophoresis of basic as well as acidic proteins. Cell, 12: 1133–1142.PubMedCrossRefGoogle Scholar
  22. Pollock C.J. 1979. Pathway of fructosan synthesis in leaf bases of Dactylis glomerata. Phytochem., 18: 777–779.CrossRefGoogle Scholar
  23. Pollock C.J., Eagles C.F., Simms I.M. 1988. Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrates in seedlings of Lolium perenne grown at 2 °C. Ann. Bot., 62: 95–100.Google Scholar
  24. Pollock C.J., Jones T. 1979. Seasonal patterns of fructan metabolism in forage grasses. New Phytol., 83: 8–15.CrossRefGoogle Scholar
  25. Pollock C.J., Lloyd E.J., Thomas H., Stoddart J.L. 1983. Growth, photosynthesis and assimilate partitioning in Lolium temulentum exposed to chilling temperatures. Physiol. Plant., 59: 257–262.CrossRefGoogle Scholar
  26. Robertson A.J., Gusta L.V., Reaney M.J.T., Isikawa M. 1988. Identification of protein correlate with increased freezing tolerance in Bromus inermis Leyss cv. Mancha cell cultures. Plant Physiol., 86: 344–347.PubMedGoogle Scholar
  27. Sarhan F., Chevrier N. 1985. Regulation of RNA synthesis and DNA dependent RNA polymerases and RNAses during cold acclimation in winter and spring wheat. Plant Physiol., 78: 250–255.PubMedCrossRefGoogle Scholar
  28. Steponkus P.L., Lynch D.V. 1989. Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J. Bioenerg. Biomembr, 21: 21–41.PubMedCrossRefGoogle Scholar
  29. Steponkus P.L., Lynch D.V., Uemura M. 1990. The influence of cold acclimation on the lipid composition and cryobehaviour of the plasma membrane of isolated rye protoplasts. Philosophical Transactions of the Royal Society of London, B. 326: 571–583.CrossRefGoogle Scholar
  30. Thomas H., James A.R. 1993. Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann. Bot., 72: 249–254.CrossRefGoogle Scholar
  31. Trunova T.L. 1987. Winter wheat frost hardiness and protein synthesis at chilling temperatures. In: Plant Cold Hardiness. Plant Biology Vol 5, ed by P.H. Li, A.R. Liss. New York. 43–58.Google Scholar
  32. Yacoob R.K., Filion W.G. 1986. Temperature stress in maize: a comparison of several cultivars. Can. J. Genet Cytol., 28: 1125–1131.Google Scholar
  33. Yoshida S., Uemura M. 1989. Alterations of plasma membranes related to cold acclimation of plants. In: Low Temperature Stress Physiology in Crops, ed by P.H. Li. CRC Press. Florida. 41–51.Google Scholar
  34. Zvereva G.N., Trunova T.L. 1985. Frost resistance of winter wheat as a function of protein synthesis during hardening. Soviet Plant Physiol., 35: 744–749.Google Scholar

Copyright information

© Department of Plant Physiology 1997

Authors and Affiliations

  • Judith Harrison
    • 1
  • Claire Tonkinson
    • 1
  • Colin Eagles
    • 1
  • Christine Foyer
    • 1
  1. 1.Institute of Grassland and Environmental ResearchPlas Gogerddan, AberystwythCeredigionUK

Personalised recommendations