Advertisement

Acta Physiologiae Plantarum

, Volume 19, Issue 1, pp 47–64 | Cite as

Oxidative stress in plants

  • Grzegorz Bartosz
Review

Abstract

Oxidative stress, defined as a shift of the balance between prooxidative and antioxidative reactions in favor of the former seems to be a common denominator of the action of various agents on living organisms. This review briefly presents the sources of reactive oxygen species and means of antioxidative defense in plants, means of assessment of oxidative stress and exemplary data on the induction of oxidative stress by various environmental and biological factors such as hyperoxia, light, drought, high salinity, cold, metal ions, pollutants, xenobiotics, toxins, reoxygenation after anoxia, experimental manipulations, pathogen infection and aging of plant organs.

Key words

Aging Antioxidants Chloroplasts Halliwell-Asada cycle Hyperreactivity Oxidative stress Reactive oxygen species Superoxide dismutase Respiratory burst 

List of abbreviations

OS

oxidative stress

ROS

reactive oxygen species

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostol, I., Heinstein, P.F., Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90: 109–116.PubMedGoogle Scholar
  2. Asada, K. 1992. Production and scavenging of active oxygen in chloroplasts. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratory Press, Cold Spring Harbor: 173–192.Google Scholar
  3. Asada, K., Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition, ed. by D.J. Kyle, Osmond, C.B., Arntzen, C.J., Elsevier, Amsterdam: 227–288.Google Scholar
  4. Auclair, C., Voisin, E. 1985. Nitrobluc tetrazolium reduction. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 123–132.Google Scholar
  5. Babior, B.M. 1991. Oxidants from phagocytes: agents of defense amd destruction. Blood 64: 959–966.Google Scholar
  6. Baker, C.J., Orlandi, E.W., Mock, N.M. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production of suspension cells. Plant Physiol. 102: 1341–1344.PubMedGoogle Scholar
  7. Baker, J.E., Wang, C.Y., Lieberman, M., Hardenburg, R. 1977. Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. Hort Sci. 12: 38–39.Google Scholar
  8. Baker, J.E., Wang, C.Y., Terlizzi, D.E. 1985. Delay of senescence in carnations by pyrazone, phenidone analogs and Tiron. Hort Sci. 20: 121–122.Google Scholar
  9. Barna, B., Ádám, A.L., Király, Z. 1993. Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissensch. 80: 420–422.CrossRefGoogle Scholar
  10. Bartosz, G. 1996. Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim. Pol. 43: 645–660.PubMedGoogle Scholar
  11. Becker, B.F. 1993. Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631.PubMedCrossRefGoogle Scholar
  12. Beyer R.E. 1992. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 70: 390–403.PubMedCrossRefGoogle Scholar
  13. Biclski, B.H.J., Richter, H.W. 1975. Some properties of the ascorbate free radical. Ann. N. Y. Acad. Sci. 258: 231–237.CrossRefGoogle Scholar
  14. Bird, R.P., Draper, H.H. 1984. Comparative studies on different methods of malonaldehyde determination. Methods Enzymol. 105: 299–305.PubMedGoogle Scholar
  15. Bolwell, G.P., Butt, V.S., Davies, D.R., Zimmerlin, A. 1995. The origin of the oxidative burst in plants. Free Rad. Res. 23: 517–532.Google Scholar
  16. Borraccino, G., Dipiero, S., Arrigoni, O. 1986. Purification and prooperties of ascorbate free-radical reductase from potato tubers. Planta 167: 521–526.CrossRefGoogle Scholar
  17. Boveris, A. 1984. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 105: 429–435.PubMedGoogle Scholar
  18. Bradley, D.J., Kjellbom, P., Lamb, C.J. 1992. Elicitorand wound-induced oxidative cross-linking of prolinerich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30.PubMedCrossRefGoogle Scholar
  19. Breen, A.P., Murphy, J.A. 1995. Reactions of oxyl radicals with DNA. Free Rad. Biol. Med. 18: 1033–1077.PubMedCrossRefGoogle Scholar
  20. Brot, N., Weissbach, H. 1983. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223: 271–281.PubMedCrossRefGoogle Scholar
  21. Bruce, R.J., West, C.A. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 91: 889–897.PubMedGoogle Scholar
  22. Buja, L.M., Eigenbrodt, M.L., Eigenbrodt, E.H. 1993. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 117: 1208–1214.PubMedGoogle Scholar
  23. Buttke, T.M., Sandstrom, P.A. 1994. Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7–10.PubMedCrossRefGoogle Scholar
  24. Cai, L., Koropatnick, J., Cherian, M.G. 1995. Metallothionein protects DNA from copper-induced but not iroon-induced cleavage in vitro. Chem. Biol. Interact. 96: 143–155.PubMedCrossRefGoogle Scholar
  25. Cao, G., Cutler, R.G. 1995. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch. Biochem. Biophys. 320: 106–114.PubMedCrossRefGoogle Scholar
  26. Caro, A., Puntarulo, S. 1996. Effect of in vivo iron supplementation on oxygen radical production by soybean roots. Biochim. Biophys. Acta 1291: 245–251.PubMedGoogle Scholar
  27. Chen, Z., Silva, H., Klessig, D.F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886.PubMedCrossRefGoogle Scholar
  28. Corpas, F.J., Gómez, M., Hernández, J.A., del Río, L.A. 1993. Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J. Plant Physiol. 141: 160–165.Google Scholar
  29. Daub, M.E., Hangarter, R.P. 1983. Production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 73: 855–857.PubMedGoogle Scholar
  30. Davies, K.J.A. 1986. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. J. Free Rad. Biol. Med. 2: 155–173.CrossRefGoogle Scholar
  31. Davies, K.J.A., Goldberg, A.L. 1987. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Biol. Chem. 262: 8227–8234.PubMedGoogle Scholar
  32. Deisseroth, A., Dounce, A.L. 1970. Catalase: Physical and chemical properties, mechanism of catalysis and physiological role. Physiol. Rev. 50: 319–375.PubMedGoogle Scholar
  33. del Rio, L.A., Donaldson, R.P. 1995. Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J. Plant Physiol. 146: 283–287.Google Scholar
  34. del Rio, L.A., Fernandez, V.M., Ruperez, F.L., Sandalio, L.M., Palma, J.M. 1989. NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol. 89: 728–731.PubMedGoogle Scholar
  35. del Rio, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G.M., Bueno, P., López-Huertas, E. 1996. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 24: 434–438.PubMedGoogle Scholar
  36. Dipiero, S., Borraccino, G. 1991. Dehydroascorbate reductase from potato tubers. Phytochem. 30: 427–429.CrossRefGoogle Scholar
  37. Doetsch, P.W., Helland, D.E., Haseltine, W.A. 1986. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry 25: 2212–2220.PubMedCrossRefGoogle Scholar
  38. Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23: 345–357.Google Scholar
  39. Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., Kawakita, K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence — a review. Gene 179: 45–51.PubMedCrossRefGoogle Scholar
  40. Dominy, P.J., Heath, R.L. 1985. Inhibition of the K+-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone. Plant Physiol. 77: 43–45.PubMedGoogle Scholar
  41. Droillard, M.J., Paulin, A., Massot, J.C. 1987. Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Plant Physiol. 71: 197–202.CrossRefGoogle Scholar
  42. Ebadi, M., Leuschen, M.P., el Refaey, H., Hamada, F.M., Rojas, P. 1996. The antioxidant properties of zinc and metallothionein. Neurochem. Int. 29: 159–166.PubMedCrossRefGoogle Scholar
  43. Elia, M.R., Borraccino, G., Dipiero, S. 1992. Soluble ascorbate peroxidase from potato tubers. Plant Sci. 85: 17–21.CrossRefGoogle Scholar
  44. Elstner, E.F. 1991. Oxygen radicals — biochemical basis for their efficacy. Klin. Wochenschr. 69: 949–956.PubMedCrossRefGoogle Scholar
  45. Fagan, J.M., Waxman, L. 1992. The ATP-independent pathway in red blod cells that degrades oxidant-damaged hemoglobin. J. Biol. Chem. 267: 23015–23022.PubMedGoogle Scholar
  46. Farage, P.K., Long, S.P., Lechner, E.G., Baker, N. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol. 95: 529–535.PubMedGoogle Scholar
  47. Farrington, J.A., Ebert, M., Land, E.J., Fletcher, K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta 314: 372–381.PubMedCrossRefGoogle Scholar
  48. Feierabend, J., Streb, P., Schmidt, M., Dehne, S., Shang, W. 1996. Expression of catalase and its relation to light stress and stress tolerance. In: Physical stresses in plants. Genes and their products for tolerance, ed. by S. Grillo, Leone, A., Springer, Berlin, Heidelberg, New York, Barcelona, Budapest, Hong Kong, London, Milan, Paris, Santa Clara, Singapore, Tokyo: 223–234.Google Scholar
  49. Flohé, L., Schlegel, W. 1971. Glutathion-peroxidase. IV. Hoppe-Seyler’s Z. Physiol. Chem. 352: 1401–1410.Google Scholar
  50. Foster, J.G., Hess, J.L. 1980. Responses of superoxide dismmutase and glutathione peroxidase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66: 482–487.PubMedGoogle Scholar
  51. Foti, M., Piattelli, M., Baratta, M.T., Ruberto, G. 1996. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agr. Food Chem. 44: 497–501.CrossRefGoogle Scholar
  52. Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.-J., Pruvost, C., Jouanin, L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047–1057.PubMedCrossRefGoogle Scholar
  53. Frei, B., Kim, M.C., Ames, B.N. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87: 4879–4883.PubMedCrossRefGoogle Scholar
  54. Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875–880.PubMedCrossRefGoogle Scholar
  55. Fridovich I. 1985. Cytochrome c. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 121–122.Google Scholar
  56. Furbank, R.T., Badger, M.R. 1983. Oxygen exchange associated with electron transport and photophosphorylation in spinach chloroplasts. Biochim. Biophys. Acta 723: 400–409.CrossRefGoogle Scholar
  57. Gérard-Monnier, D., Chaudiere, J. 1996. Métabolisme et fonction antioxydante du glutathion. Path. Biol. 44: 77–85.Google Scholar
  58. Gille, G., Sigler, K. 1995. Oxidative stress and living cells. Folia Microbiol. 40: 131–152.Google Scholar
  59. Graf E. 1992. Antioxidant potential of ferulic acid. Free Rad. Biol. Med. 13: 435–448.PubMedCrossRefGoogle Scholar
  60. Graf, E., Eaton, J.W. 1990. Antioxidant functions of phytic acid. Free Rad. Biol. Med. 8: 61–69.PubMedCrossRefGoogle Scholar
  61. Greenberg, J.T., Guo, A., Klessig, D.F., Ausubel, F.M. 1994. Programmed cell death in plants: a pathogentriggered response activated coordinately with multiple defense functions. Cell 77: 551–563.PubMedCrossRefGoogle Scholar
  62. Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.PubMedCrossRefGoogle Scholar
  63. Gutteridge J.M.C. 1986. Aspects to consider when detecting and measuring lipid peroxidation. Free Rad. Res. Comm. 1: 173–184.Google Scholar
  64. Halliwell B. 1982. The toxic effects of oxygen on plant tissues. In: Superoxide dismutase, ed. by L.W. Oberley, CRC Press, Boca Raton, FL: 89–123.Google Scholar
  65. Halliwell, B., Gutteridge, J.M.C. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.Google Scholar
  66. Hendry, G.A.F. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3: 141–153.Google Scholar
  67. Hernández, J.A., Corpas, F.J., Gómez, M., del Rio, L.A., Sevilla, F. 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103–110.CrossRefGoogle Scholar
  68. Hertwig, B., Streb, A., Feierabend, J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol. 100: 1547–1553.PubMedGoogle Scholar
  69. Hippeli, S., Elstner, E.F. 1996. Mechanisms of oxygen activation suring plant stress: biochemical effects of air pollutants. J. Plant Physiol. 148: 249–257.Google Scholar
  70. Holmgren A. 1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264: 13963–13966.PubMedGoogle Scholar
  71. Ingold, K.U., Webb, A.C., Witter, D., Burton, G.W., Metcalfe, T.A., Muller, D.P.R. 1987. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch. Biochem. Biophys. 259: 224–225.PubMedCrossRefGoogle Scholar
  72. Jacks, T.J., Davidonis, G.H. 1996. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol. Cell. Biochem. 158: 77–79.PubMedGoogle Scholar
  73. Jahnke, L.S., Hull, M.R., Long, S.P. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environm. 14: 97–104.CrossRefGoogle Scholar
  74. Janzen E.G. 1990. Spin trapping and associated vocabulary. Free Rad. Res. Comm. 9: 163–167.Google Scholar
  75. Kamal-Eldin, A., Appelqvist, L.-A. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701.PubMedCrossRefGoogle Scholar
  76. Kauss, H., Jeblick, W. 1995. Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108: 1171–1178.PubMedGoogle Scholar
  77. Khan, A.U., Wilson, T. 1995. Reactive oxygen species as cellular messengers. Chem. Biol. 2: 437–445.PubMedCrossRefGoogle Scholar
  78. Kirtikara, K., Talbot, D. 1996. Alteration in protein accumulation, gene expression and ascorbate-glutathione pathway in tomato (Lycopersicon esculentum) under paraquat and ozone stress. J. Plant Physiol. 148: 752–760.Google Scholar
  79. Kozubek, A., Nienartowicz, B. 1995. Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim. Pol. 42: 309–316.PubMedGoogle Scholar
  80. Larrgilliere, C., Mélancon, S.B. 1988. Free malondialdehyde determination in human plasma by high-performance liquid chromatography. Anal. Biochem. 170: 123–126.CrossRefGoogle Scholar
  81. Legendre, L., Rueter, S., Heinstein, P.F., Low, P.S. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 102: 233–240.PubMedGoogle Scholar
  82. Leshem Y.Y. 1988. Plant senescence processes and free radicals. Free Rad. Biol. Med. 5: 39–49.PubMedCrossRefGoogle Scholar
  83. Leshem, Y.Y., Haramaty, E. 1996. The characterization and contrasting effects of the nitric oxide free radical in Pisum sativum Linn. foliage. J. Plant Physiol. 148: 258–263.Google Scholar
  84. Levine, A., Tenhaken, R., Dixon, R., Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.PubMedCrossRefGoogle Scholar
  85. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B.W., Shaltiel, S., Stadtman, E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464–477.PubMedGoogle Scholar
  86. Lim, B.P., Nagao, A., Terao, J., Tanaka, K., Suzuki, T., Takama, K. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178–184.PubMedGoogle Scholar
  87. Lind, C., Hochstein, P., Ernster, L. 1982. DT-Diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch. Biochem. Biophys. 216: 178–185.PubMedCrossRefGoogle Scholar
  88. Lobreaux, S., Briat, J.-F. 1991. Ferritin accumulation and degradation in differrent organs of pea (Pisum sativum) during development. Biochem. J. 274: 601–606.PubMedGoogle Scholar
  89. Low, P.S., Heinstein, P.F. 1986. Elicitor stimulattion of the defense response in cultured plant cells monitored by fluorescent dyes. Arch. Biochem. Biophys. 249: 472–479.PubMedCrossRefGoogle Scholar
  90. Low, P.S., Merida, J.R. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96: 533–542.CrossRefGoogle Scholar
  91. Matters, G.L., Scandalios, J.G. 1986. Changes in plant gene expression during stress. Dev. Genet. 7: 167–175.PubMedCrossRefGoogle Scholar
  92. McCord, J., Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.PubMedGoogle Scholar
  93. McCord J.M. 1985. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312: 159–163.PubMedCrossRefGoogle Scholar
  94. McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111: 1177–1181.PubMedGoogle Scholar
  95. McKersie, B.D., Chen, Y., de Beus, M., Bowley, S.R., Bowley, C., Inzé, D., D’Halluin, K., Botterman, J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103: 1155–1163.PubMedCrossRefGoogle Scholar
  96. Meister A. 1983. Selective modification of glutathione metabolism. Science 220: 472–477.PubMedCrossRefGoogle Scholar
  97. Michalski, W.P., Kaniuga, Z. 1982. Photosynthetic apparatus of chilling-sensitive plants. XI. Reversibility by light of cold- and dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochim. Biophys. Acta 680: 250–257.CrossRefGoogle Scholar
  98. Monk, L.S., Fagerstedt, K.V., Crawford, R.M. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456–459.Google Scholar
  99. Mostowska A., Gwóźdź E.A. 1995. Reaction of photosynthetic apparatus to oxidative stress. Post. Biol. Kom. 22: 43–63.Google Scholar
  100. Motoyama, T., Miki, M., Mino, M., Takahashi, M., Niki, E. 1989. Synergistic inhibition in dispersed phosphatidylcholine liposomes by a combination of vitamin E and cysteine. Arch. Biochem. Biophys., 270: 655–661.PubMedCrossRefGoogle Scholar
  101. Mullineaux, P.M., Creissen, G.P. 1996. Opportunities for the genetic manipulation of antioxidants in plant foods. Biochem. Soc. Trans. 24: 829–835.PubMedGoogle Scholar
  102. Murphy, M.E., Sies, H. 1990. Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186: 595–610.PubMedGoogle Scholar
  103. Navari-Izzo, F., Quartacci, M.F., Sgherri, C.M.L. 1996. Superoxide generation in relation to dehydration and rehydration. Biochem. Soc. Trans. 24: 447–451.PubMedGoogle Scholar
  104. Neužil, J., Stocker, R. 1993. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 331: 281–284.PubMedCrossRefGoogle Scholar
  105. Okuda, T., Matsuda, Y., Sugawara, M., Sagisaka, S. 1992. Metabolic response to treatment with cold, paraquat or 3-amino-1,2,4-triazole in leaves of winter wheat. Biosci. Biotechnol. Biochem. 56: 1911–1915.PubMedCrossRefGoogle Scholar
  106. Palozza, P., Krinsky, N.I. 1992. Astaxanthin and canthaxanthin are potent antixoidants in a membrane model. Arch. Biochem. Biophys. 297: 291–295.PubMedCrossRefGoogle Scholar
  107. Park, E.M., Shigenaga, M.K., Degan, P., Korn, T.S., Kitzler, J.W., Wehr, C.M., Kolachana, P., Ames, B.N. 1992. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc. Nat. Acad. Sci. USA 89: 3375–3379.PubMedCrossRefGoogle Scholar
  108. Pastori, G.M., Trippi, V.S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33: 957–961.Google Scholar
  109. Paulin, A., Droillard, M., J., Bureau, J.M. 1986. Effect of a free radical scavenger, 3,4,5-trichlorophenol, on ethylene production and on changes in lipids and membrane integrity during senscence of petals of cut carnations (Dianthus caryophyllus). Physiol. Plant. 67: 465–471.CrossRefGoogle Scholar
  110. Peskin A.V. 1997. Cu,Zn-superoxide dismutase gene dosage and cell resistance to oxidative stress: a review. Biosci. Rep. in press.Google Scholar
  111. Pick E. 1986. Microassays for superoxide and hydrogen peroxide production and nitriblue tetrazolium reduction using and enzyme immunoassay microplate reader. Methods Enzymol. 132: 407–421.PubMedCrossRefGoogle Scholar
  112. Pitcher, L.H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J.M., Zilinskas, B.A. 1991. Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97: 452–455.PubMedGoogle Scholar
  113. Poli, G., Albano, E., Dianzani, M.U., Eds. 1993. Free Radicals: From Basic Science to Medicine. Birkhäuser Verlag, Basel, Boston, Berlin.Google Scholar
  114. Polle, A., Pfirrman, T., Chakrabarti, S., Rennenberg, H. 1993. The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environm. 16: 311–316.CrossRefGoogle Scholar
  115. Price, A., Knight, M., Knight, H., Cuin, T., Tomos, D., Ashenden, T. 1996. Cytosolic calcium and oxidative plant stress. Biochem. Soc. Trans. 24: 479–483.PubMedGoogle Scholar
  116. Price, A.H., Atherton, N.M., Hendry, G.A.F. 1989. Plants under drought-stress generate activated oxygen. Free Rad. Res. Comm. 8: 61–66.Google Scholar
  117. Pryor W.A. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48: 657–667.CrossRefGoogle Scholar
  118. Przymusiński R., Rucińska R., Gwóźdź E.A. 1995. The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu,Zn-superoxide dismutase. Env. Exp. Bot. 35: 485–495.CrossRefGoogle Scholar
  119. Rabinovitch, H.D., Sklan, D. 1981. Superoxide dismutase activity in ripening cucumber and pepper fruit. Physiol. Plant. 52: 380–384.CrossRefGoogle Scholar
  120. Rabinowitch, H.D., Fridovich, I. 1983. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37: 679–690.Google Scholar
  121. Rabinowitch, H.D., Sklan, D. 1980. Superoxide dismutase: a possible protective agent against sunscald in tomatoes (Lycopersicon esculentum L.). Planta 148: 162–167.CrossRefGoogle Scholar
  122. Redinbaugh, M.G., Sabre, M., Scandalios, J.G. 1990. The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol. 92: 375–380.PubMedGoogle Scholar
  123. Rhee, S.G., Chae, H.Z. 1994. Thioredoxin peroxidase and peroxiredoxin family. Mol. Cells 4: 137–142.Google Scholar
  124. Robak, J., Gryglewski, R.J. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837–841.PubMedCrossRefGoogle Scholar
  125. Sabri, N., Pelissier, B., Teissié, J. 1996. Electroperme-abilization of intact maize cells induces an oxidative stress. Eur. J. Biochem. 238: 737–743.PubMedCrossRefGoogle Scholar
  126. Sakagami, H., Sakagami, T., Yoshida, H., Omata, T., Shiota, F., Takahashi, H., Kawazoe, Y., Takeda, M. 1995. Hypochlorite scavenging activity of polyphenols. Anticancer Res. 15: 917–922.PubMedGoogle Scholar
  127. Scandalios J.G. 1992. Regulation of the antioxidant defense genes Cat and SOD of maize. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratoty Press, Cold Spring Harbor: 117–152.Google Scholar
  128. Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12.PubMedGoogle Scholar
  129. Schaedle, M., Bassham, J.A. 1977. Chloroplast glutathione reductase. Plant Physiol. 59: 1011–1012.PubMedGoogle Scholar
  130. Serbinova, E., Kagan, E., Han, D., Packer, L. 1991. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-to-cotrienol. Free Rad. Biol. Med. 10: 263–275.PubMedCrossRefGoogle Scholar
  131. Shigenaga, M.K., Aboujaoude, E.N., Chen, Q., Ames, B.N. 1994. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 234: 16–33.PubMedGoogle Scholar
  132. Sies H., Ed. 1991. Oxidative Stress-Oxidants and Anti-oxidants. Academic Press, New York.Google Scholar
  133. Simontacchi, M., Caro, A., Fraga, C.G., Puntarulo, S. 1993. Oxidative stress affects a-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol. 103: 949–953.PubMedGoogle Scholar
  134. Simontacchi, M., Caro, A., Puntarulo, S. 1995. Oxygen-dependent increase of antioxidants in soybean embryonic axes. Int. J. Biochem. Cell Biol. 27: 1221–1229.CrossRefGoogle Scholar
  135. Stadtman E.R. 1991. Ascorbic acid and oxidative inactivation of proteins. Am. J. Clin. Nutr. 54: 1125S-1128S.PubMedGoogle Scholar
  136. Stadtman E.R. 1992. Protein oxidation and aging. Science 257: 1220–1224.PubMedCrossRefGoogle Scholar
  137. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046.PubMedCrossRefGoogle Scholar
  138. Strother S. 1988. The role of free radicals in leaf senescence. Gerontology 34: 151–156.PubMedCrossRefGoogle Scholar
  139. Sun, W.Q., Leopold, A.C. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant. 94: 94–104.CrossRefGoogle Scholar
  140. Sylvestre, I., Droillard, M.-J., Bureau, J.-M., Paulin, A. 1989. Effects of the ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol. Biochem. 27: 407–413.Google Scholar
  141. Tanaka, K., Sugahara, K. 1980. Role of superoxide dismutase in defese against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol. 21: 601–611.Google Scholar
  142. Tepperman, J.M., Dunsmuir, P. 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14: 501–511.PubMedCrossRefGoogle Scholar
  143. Thomas, J.P., Geiger, P.G., Maiorino, M., Ursini, F., Girotti, A.W. 1990. Enzymatic rduction of phopholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim. Biophys. Acta 1045: 252–260.PubMedGoogle Scholar
  144. Thompson, J.E., Legge, R.L., Barber, R.F. 1987. The role of free radicals in senescence and wounding. New Phytol. 105: 317–344.CrossRefGoogle Scholar
  145. Wardman, P., Candeias, L.P. 1996. Fenton chemistry: an introduction. Radiat. Res. 145: 525–531.CrossRefGoogle Scholar
  146. Wilson, D.O., McDonald, M.B. 1986. The lipid peroxidation model of seed aging. Seed Sci. Technol. 14: 269–300.Google Scholar
  147. Wiseman H. 1993. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326: 285–288.PubMedCrossRefGoogle Scholar
  148. Yamamoto, Y., Frei, B., Ames, B.N. 1990. Assay of lipid hydroperoxides using HPLC with isoluminol chemiluminescence detection. Methods Enzymol. 186: 371–379.PubMedGoogle Scholar
  149. Zenk M.H. 1996. Heavy metal detoxification in higher plants — a review. Gene 179: 21–30.PubMedCrossRefGoogle Scholar
  150. Zhang, J., Kirkham, M.B. 1994. Drought stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.Google Scholar

Copyright information

© Department of Plant Physiology 1997

Authors and Affiliations

  • Grzegorz Bartosz
    • 1
  1. 1.Department of Molecular BiophysicsUniversity of ŁódźŁódźPoland

Personalised recommendations