Acta Physiologiae Plantarum

, Volume 19, Issue 3, pp 257–268 | Cite as

Role of phenylpropanoid compounds in plant responses to different stress factors

  • Danuta Solecka

Key words

phenolics phenylpropanoids plants stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey J. A., Mansfield J. W., eds. 1982. Phytoalexins, John Wiley & Sons, New York.Google Scholar
  2. Bailey J. A. 1982. Mechanisms of phytoalexin accumulation; in Phytoalexins, (Bailey J. A. & Mansfield J. W., eds.) pp. 289–311, John Wiley & Sons, New York.Google Scholar
  3. Barber J., Andersson B. 1992. Too much of a good thing: light can be bad for photosynthesis. TIBS, 17: 61–66.PubMedGoogle Scholar
  4. Bartolo M. E., Wallner S J. 1986. Cold hardiness and cellulase resistance induced by wounding. Plant Physiol. Suppl. 80 (Abstr.), 122.Google Scholar
  5. Barz W., Mackenbrock U. 1994. Constitutive and eliciation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum) cell suspension cultures. Plant Cell Tissue Organ. Cult., 38: 199–211.CrossRefGoogle Scholar
  6. Beckman C.H., Mueller W.C., Mace M.E. 1974. The stabilisation of artificial and natural cell wall membranes by phenolic infusion and its relation to wilt disease resistance. Phytopathology, 64: 1214–1218.CrossRefGoogle Scholar
  7. Bernards M.A., Lewis N.G. 1992. Alkyl ferulates in wound healing potato tubers. Phytochemistry, 31: 3409–3412.PubMedCrossRefGoogle Scholar
  8. Bohnert H.J., Nelson D.E., Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell, 7: 1099–1111.PubMedCrossRefGoogle Scholar
  9. Bolwell G.P., Cramer C.L., Lamb C.J., Schuch W., Dixon R.A. 1986. L-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme by trans-cinnamic acid. Planta, 169: 97–107.CrossRefGoogle Scholar
  10. Bolwell G.P. 1992. A role for phosphorylation in the down-regulation of phenylalanine ammonia-lyase in suspension cultured cells of French bean. Phytochemistry, 31: 4081–4086.CrossRefGoogle Scholar
  11. Bongue-Bartelsman M., Phillips D.A. 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem., 33: 539–546.Google Scholar
  12. Boudet A.M., Lapierre C., Grima-Pettenati J. 1995. Biochemistry and molecular biology of lignofication. New Phytologist, 129: 203–236.CrossRefGoogle Scholar
  13. Chalker-Scott L., Fuchigami L.H. 1989. The role of phenolic compounds in plant stress responses; in Low Temperature Stress Physiology in Crops (Paul H.L., ed.), pp. 27–40, CRC Press Inc., Boca Raton, Florida.Google Scholar
  14. Chen Z., Klessig D.F. 1991. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc. Natl. Acad. Sci. USA, 88: 8179–8183.PubMedCrossRefGoogle Scholar
  15. Christie RJ., Alfenito M.R., Walbot V. 1994. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 194: 541–549.CrossRefGoogle Scholar
  16. Creasy L.L. 1987. The role of enzyme inactivation in the regulation of synthetic pathways: A case history. Physiol. Plant., 71: 389–392.CrossRefGoogle Scholar
  17. Darvil A.G., Albersheim P. 1984. Phytoalexins and their elicitors — a defence against microbial infection in plants. Annu. Rev. Plant Physiol., 35: 243–261.CrossRefGoogle Scholar
  18. Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. 1994. A central role for salicylic acid in plant disease resistance. Science, 266: 1247–1250.CrossRefPubMedGoogle Scholar
  19. DiCosmo F., Towers G.H.N. 1983. Stress and secondary metabolism in cultured plant cells; in Phytochemical Adaptations to Stress. (Timmermann B.N., Steelink C., & Loewus F.A., eds.), pp. 97–136, Plenum Press, New York.Google Scholar
  20. Dixon R.A., Paiva N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell, 7: 1085–1097.PubMedCrossRefGoogle Scholar
  21. Dixon R.A., Choudhary A.D., Dalkin D., Edwards R., Fahrendorf T., Gowri G., Harrison M.J., Lamb C.J., Loake G.J., Maxwell C.A., Orr J., Paiva N.L. 1992. Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa; in Phenolic Metabolism in Plants, (Stafford H.A. & Ibrahim R.K., eds) pp 91–138, Plenum Press, New York.Google Scholar
  22. Dixon R.A., Harrison M.J., Lamb C. 1994. Early events in the activation of plant defence responses. Annu. Rev. Phytopathol., 32: 479–501.CrossRefGoogle Scholar
  23. Dixon R.A., Paiva N.L., Bhattacharyya M.K. 1995. Engineering disease resistance in plants: An overview; in Molecular Methods in Plant Pathology (Singh R.R &. Singh U.S., eds) pp. 249–270, CRC Press, Boca Raton.Google Scholar
  24. Douglas C.J. 1996. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. TIPS, 1: 171–178.Google Scholar
  25. Farmer E. E. 1985. Effects of fungal elicitor on lignin biosynthesis in cell suspension cultures of soybean. Plant Physiol., 78: 338–342.PubMedGoogle Scholar
  26. Fry S.C. 1982. Phenolic components of the primary cell wall. Biochem. J., 203: 493–504.PubMedGoogle Scholar
  27. Fry S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol., 37: 165–186.CrossRefGoogle Scholar
  28. Gersehenzon J. 1983. Changes in the levels of plant secondary metabolites under water and nutrient stress; in Phytochemical Adaptations to Stress (Timmermann B.N., Steelink C. & Loewus F.A., eds.) pp. 273–299, Plenum Press, New York.Google Scholar
  29. Graham D., Patterson B. D. 1982. Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Annu. Rev. Plant Physiol., 33: 347–382.CrossRefGoogle Scholar
  30. Graham T.L., Graham M.Y. 1996. Signalling in soybean phenylpropanoid responses. Plant Physiol. 110: 1123–1133.PubMedGoogle Scholar
  31. Graham T.L. 1991. Flavonoid and isoflavonoid distribution in developing soybean seedling tissue and in seed and root exudates. Plant Physiol., 95: 594–603.PubMedGoogle Scholar
  32. Griffith M., Huner N.P.A., Espelle K.F., Kolattukudy P.E. 1985. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma, 125: 53–57.CrossRefGoogle Scholar
  33. Hahlbrock K., Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40: 347–469.CrossRefGoogle Scholar
  34. Hahlbrock K., Scheel D., Logemann E., Numberger T., Parniske M., Reinold S., Sacks W.R., Schmelzer E. 1995. Oligopeptide elicitor-mediated defence gene activation in cultured parsley cells. Proc. Natl. Acad. Sci. 92: 4150–4157.PubMedCrossRefGoogle Scholar
  35. Harborne J.B. ed. 1988. The Flavonoids: Advances in Research since 1980. Chapman and Hall, New York.Google Scholar
  36. Henning J. 1996. Elements of signal transduction leading to activation of plant defence. Biotechnologia 32: 40–51.Google Scholar
  37. Herrmann K.M. 1995. The shikimate pathway: Early steps in the biosynthesis of aromatic compounds. Plant Cell 7: 907–919.PubMedCrossRefGoogle Scholar
  38. Holto, T.A., Cornish E.C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.CrossRefGoogle Scholar
  39. Hopp W., Seitz H.U. 1987. The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 170: 74–85.CrossRefGoogle Scholar
  40. Hungria M., Joseph C.M. Phillips D.A. 1991. Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 97: 751–758.PubMedGoogle Scholar
  41. Jones D.H. 1984. Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochemistry, 23: 1349–1359.CrossRefGoogle Scholar
  42. Kacperska A. 1995. The phytohormone involvement in plant responses to environmental stress factors. Kosmos, 44: 623–637 (in Polish).Google Scholar
  43. Kamisaka S., Takeda S., Takahashi K. Shibata K. 1990. Diferulic and ferulic acid in the cell wall of Avena coleoptiles: their relationship to mechanical properties of the cell wall. Physiol. Plant. 78: 1–7.CrossRefGoogle Scholar
  44. Knox J.P. Dodge, A.D. 1985. Singlet oxygen and plants. Phytochemistry 24: 889–893.CrossRefGoogle Scholar
  45. Kolattukudy P. E. Soliday C. L. 1985. Effects of stress on the defensive barriers of plants; in Cellular and Molecular Biology of Plant Stress (Key J. L. & Kosuge T., eds.) pp. 381–405, Alan R. Liss, New York.Google Scholar
  46. Kolattukudy P. E. 1984. Biochemistry and function of cutin and suberin. Can. J. Bot., 62: 2918–2927.Google Scholar
  47. Kuc J. 1982. Induced immunity to plant disease. BioScience, 32: 854–861.CrossRefGoogle Scholar
  48. Kyle D.J., Osmond C.B. Arntzen C.J. 1987. Photoihibition, Topics in Photosynthesis. (Barber, J., ed.) Elsevier, New York, Amsterdam, Oxford.Google Scholar
  49. Larcher W. 1995. Physiological Plant Ecology, Springer, Berlin, Heidelberg.Google Scholar
  50. Lawton M.A., Lamb C.J. 1987. Transcriptional activation of plant defence genes by fungal elicitor, wounding, and infection. Mol. Cell. Biol. 7: 335–341.PubMedGoogle Scholar
  51. Lewis N.G., Yamamoto E. 1990. Lignin: Occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–498.PubMedCrossRefGoogle Scholar
  52. Li J., Ou-Lee T.-M., Raba R., Amundson R.G., Last R.L. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171–179.PubMedCrossRefGoogle Scholar
  53. Liang X., Dron M., Cramer C.L., Dixon R.A., Lamb C.J. 1989. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 264: 14486–14492.PubMedGoogle Scholar
  54. Liu L., Gitz D.C. III McClure J.W. 1995. Effect of UV-B on flawonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plant. 93: 725–733.CrossRefGoogle Scholar
  55. Lois R., Buchanan B.B. 1994. Severesensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II. Mechanisms of UV-resistance in Arabidopsis. Planta, 194: 504–509.CrossRefGoogle Scholar
  56. Mäder M. Füssl R. 1982. Role of peroxidase in lignification of tobacco cells. II. Regulation by phenolic compounds. Plant Physiol., 70: 1132–1136.PubMedGoogle Scholar
  57. Manvandad M., Edwards R., Liang X., Lamb C.J., Dixon R.A. 1990. Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiol., 94: 671–680.CrossRefGoogle Scholar
  58. Margna U. 1977. Control at the level of substrate supply — an alternative in regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 16: 419–426.CrossRefGoogle Scholar
  59. Marschner H. 1991. Root-induced changes in the availability of micronutrients in the rhizosphere; in Plant Roots, the Hidden Half, (Waisel Y., Eshel A., Kafkafi U. eds) pp. 503–528, Marcel Dekker, Inc., New York.Google Scholar
  60. McKersie B.D. Leshem Y.Y. 1994. Oxidative stress; in Stress and Stress Coping in Cultivated Plants, pp. 15–54, Kluwer, Dordrecht.Google Scholar
  61. Neukom H. 1976. Chemistry and properties of the non-starchy polysaccharides (NSP) of wheat flour. Lebensm. Wiss. Technol. 9: 143–148.Google Scholar
  62. Nobloch K. H. Berlin J. 1983. Influence of phosphate on the formation of the indole alkaloid and phenolic compounds in cell suspension cultures of Catharanthus roseus: I. Comparison of enzyme activities and product accumulation. Plant Cell Tissue Organ Culture. 2: 333–339.CrossRefGoogle Scholar
  63. Oomman A., Dixon R.A., Paiva N.L. 1994. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell, 8: 1789–1803.CrossRefGoogle Scholar
  64. Paroschy J.H., Meiering A.G., Peterson R.L., Hostetter G., Neff A. 1980. Mechanical winter injury in grape-vine trunks, Am. J. Enol. Viti., 31: 227–228.Google Scholar
  65. Raskin I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–463.CrossRefGoogle Scholar
  66. Rhodes M.J.C. Wooltorton L.S.C. 1980. Phenolic metabolism in fruit and vegetable tissue under stress. ARC Food Research Institute Biennial Report 1977–1978, Norwich, UK.Google Scholar
  67. Sanchez M., Pena M.J., Revilla G. Zarra I. 1996. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol. 111: 941–946.PubMedGoogle Scholar
  68. Schroder G., Brown J.W.S., Schroder J. 1988. Molecular analysis of reservatrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 172: 161–169.PubMedCrossRefGoogle Scholar
  69. Simpson J., Herrera-Estella L. 1989. Light-regulated gene expression. Critical Reviews in Plant Science 7: 95–109.Google Scholar
  70. Smith C.G., Rodgers M.W., Zimmerlin A., Fernandino D., Bolwell G.P. 1994. Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 169: 155–163.CrossRefGoogle Scholar
  71. Smith D.A. 1982. Toxicity of phytoalexins; in Phytoalexins, (J.A. Bailey J.W. Mansfield, eds) pp. 218–252, John Wiley and Sons, New York.Google Scholar
  72. Solecka D., Kacperska A. 1995. Phenylalanine ammonia-lyase activity in leaves of winter oilseed rape plants as affected by acclimation of plants to low temperature. Plant Physiol. Biochem. 33: 585–591.Google Scholar
  73. Stapleton A.E. 1992. Ultraviolet radiation and plants: burning questions. Plant Cell 4: 1353–1358.PubMedCrossRefGoogle Scholar
  74. Streltsina S. A. 1980. Aspects of the composition of phenolic compounds in the fruits of different species and varietal groups of apple. Byull. Vses. Inst. Rastenievod., 98: 50–52.Google Scholar
  75. Szakiel A. 1991. Phytoalexins in natural plant resistance. Post. Biochem., 37: 104–111 (in Polish).Google Scholar
  76. Sztejnberg A., Azaizia H., Chet I. 1983. The possible role of phenolic compounds in resistance of horticultural crops to Dematophora nexatrix Hartig. Phytopathol. Z.. 107: 318–322.Google Scholar
  77. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H., Ryals J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–965.PubMedCrossRefGoogle Scholar
  78. Wallace G., Fry S.C. 1994. Phenolic components of the plant cell wall. Int. Rev. Cytol. 151: 229–267.PubMedCrossRefGoogle Scholar
  79. Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L. 1991. Co-ordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094.PubMedCrossRefGoogle Scholar
  80. Ward E.W.B., Cahill D.M., Bhattacharyya M.K. 1989. Abscisic acid suppression of phenylalanine ammonia-lyase activity and messenger RNA, and resistance of soybeans to Phytophtora megasperma f. sp. glycinea. Plant Physiol. 91: 23–27.PubMedGoogle Scholar
  81. Whetten R., Sederoff R. 1995. Lignin biosynthesis. Plant Cell 7: 1001–1013.PubMedCrossRefGoogle Scholar
  82. Wojtaszek P., Stobiecki M., Gulewicz K. 1993. Role of nitrogen and plant growth regulators in the exudation and accumulation. J. Plant Physiol. 142: 689–694.Google Scholar

Copyright information

© Department of Plant Physiology 1997

Authors and Affiliations

  • Danuta Solecka
    • 1
  1. 1.Institute of Plant Experimental BiologyWarsaw UniversityWarszawa

Personalised recommendations