Advertisement

Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry

  • Yanier Acosta
  • Lianny Pérez
  • Claudia Linares
  • Lázaro Hernández
  • Doris Escalante
  • Aurora Pérez
  • Byron E. Zevallos
  • Lourdes Yabor
  • Marcos Edel Martínez-Montero
  • Inaudis Cejas
  • Dayamí Fontes
  • Sershen
  • José Carlos LorenzoEmail author
Short Communication
  • 31 Downloads

Abstract

Teramnus labialis (L.f.) Spreng is a legume that plays an important role in agriculture, due to its use as animal feed and its role as an enhancer of soil physicochemical conditions. However, given previous reports on the effects of seed cryopreservation on seedling vigor and biochemistry in a number of species, the present study looked at the effects of T. labialis seed cryopreservation on subsequent seed and seedling [0–28 days post seed exposure to liquid nitrogen (LN)], growth (germination, seedling length and fresh and dry mass) and biochemistry (chlorophyll, aldehyde, phenolic and protein levels). The seeds were intact in terms of macrostructure after exposure to LN, however, there was a significant (3.5-fold) increase in electrolyte leakage during imbibition. Seedling emergence was also improved by cryostorage during the 1st week of culture (4.1-fold increase) and at 28 days (2.5-fold increase). Consequently, seedling growth (in terms of plantlet length, and fresh and dry mass) was superior in seedlings arising from cryopreserved seed, but this stimulatory effect was more evident at 14 than 28 days of culture. An increase in malondialdehyde levels in cryopreserved seeds is most likely a consequence of damage to the external seed structures following cooling and rewarming, while the rise in cell wall-linked phenolics and aldehydes in roots of seedlings produced from cryopreserved seeds could be linked to water and nutrient stress brought about by greater root growth.

Keywords

Animal feed Crops Cryopreservation Legumes Nitrogen fixation Seed dormancy 

Notes

Acknowledgements

This research was supported by the University of Ciego de Avila (Cuba), the Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López (Ecuador), and the University of Kwazulu-Natal (South Africa).

References

  1. Acosta Y, Hernández L, Mazorra C, Quintana N, Zevallos BE, Cejas I, Sershen LJC, Martínez-Montero ME, Fontes D (2019) Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus labialis (L.F.) Spreng. CryoLetters 40:36–44PubMedGoogle Scholar
  2. Albro PW, Corbett JT, Schroeder JL (1986) Application of the thiobarbituric acid assay to the measurement of lipid peroxidation products in microsomes. J Biochem Biophys Meth 13:185–194CrossRefGoogle Scholar
  3. AOAC (2000) AOAC international, 17th edn. AOAC, GaithersburgGoogle Scholar
  4. Arguedas M, Gómez D, Hernández L, Engelmann F, Garramone R, Cejas I, Yabor L, Martínez-Montero ME, Lorenzo JC (2018) Maize seed cryo-storage modifies chlorophyll, carotenoid, protein, aldehyde and phenolics levels during early stages of germination. Acta Physiol Plant 40:118CrossRefGoogle Scholar
  5. Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, New YorkGoogle Scholar
  6. Cardoso FA, Pita JM, Palmeira J (2000) Efecto de la crioconservación sobre la germinación de semillas de leguminosas. Rev Bras Prod Agroind 2:67–71Google Scholar
  7. Cejas I, Vives K, Laudat T, González-Olmedo J, Engelmann F, Martínez-Montero ME, Lorenzo JC (2012) Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep 31:2065–2073CrossRefGoogle Scholar
  8. Crews TE, Blesh J, Culman SW, Hayes RC, Jensen ES, Mack MC, Peoples MB, Schipanski ME (2016) Going where no grains have gone before: from early to mid-succession. Agric Ecosyst Environ 223:223–238CrossRefGoogle Scholar
  9. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 8–20Google Scholar
  10. Engelmann F, Ramanatha R (2012) Major research challenges and directions for future research. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, Berlin, pp 511–526Google Scholar
  11. Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, p 496Google Scholar
  12. Fontes D, Mazorra C, Lazo M, Pulido L, Cubillas N, Rodríguez L, Hernández N, Rodríguez W (2008) Teramnus labialis: leguminosa promisoria para la producción diversificada en fincas citrícolas. Zoot Trop 26:351–354Google Scholar
  13. Fontes D, Mazorra C, Acosta Y, Pardo J, Martínez J, Fernandez P, Lavigne C (2018) Productive behavior´s live of herbaceous leguminous coverage in a plantation of guava (Psidium guajava L.) var.Enana Roja Cubana (eea-1840). Univ Cie 7:297–308Google Scholar
  14. González Y, Mendoza F (1991) Comportamiento de la germinación de Teramnus labialis cv. Semilla Clara. II. Tratamientos antes de almacenar. Pastos y Forrajes 14:27–32Google Scholar
  15. Gurr S, McPherson J, Bowles D (1992) Lignin and associated phenolic acids in cell walls. In: Wilkinson DL (ed) Molecular plant pathology. Oxford Press, Oxford, pp 51–56Google Scholar
  16. Heath R, Packer J (1968) Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefGoogle Scholar
  17. Kozlowski TT, Pallardy SG (2002) Acclimation and adaptative response of woody plants to environmental stresses. Bot Rev 8:270CrossRefGoogle Scholar
  18. Lorenzo JC, Yabor L, Medina N, Quintana N, Wells V (2015) Coefficient of variation can identify the most important effects of experimental treatments. Not Bot Horti Agrobo Cluj-Nap 43:287–291CrossRefGoogle Scholar
  19. Martínez-Montero ME, Mora N, Quiñones J, González-Arnao MT, Engelmann F, Lorenzo JC (2002) Effect of cryopreservation on the structural and functional integrity of cell membranes of sugarcane (Saccharum sp.) embryogenic calluses. Cryoletters 23:237–244PubMedGoogle Scholar
  20. Mazorra-Calero CA, Fontes-Marrero D, Donis-García LH, Martínez-Melo J, Acosta-Fernández Y, Espinosa-Alemán I, Lavinge C, Fernandes P, González-Morales A (2016) Diagnóstico tecnológico y socioeconómico del establecimiento de Psidium guajava L. y Teramnus labialis en Ciego de Ávila, Cuba. Past For 39:259–264Google Scholar
  21. Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018) The role of systemic and non-systemic fungicides on the physiological and biochemical parameters in plant: implications for defense responses. FEB Fres Environ Bull 27:8585Google Scholar
  22. Moreno ME (1996) Análisis Físico y Biológico de Semillas Agrícolas, 3rd edn. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  23. Onyilagha JC, Elliott BH, Buckner E, Okiror SO, Raney PJ (2011) Seed chlorophyll influences vigor in oilseed rape (Brassica napus L. var AC Excel). J Agric Sci 3:73Google Scholar
  24. Pérez-Rodríguez JL, Escriba RCR, González GYL, Olmedo JLG, Martínez-Montero ME (2017) Effect of desiccation on physiological and biochemical indicators associated with the germination and vigor of cryopreserved seeds of Nicotiana tabacum L. cv. Sancti Spíritus 96. Vitro Cell Dev Biol Plant 53:1–9CrossRefGoogle Scholar
  25. Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156CrossRefGoogle Scholar
  26. Pritchard H (2007) Cryopreservation of desiccation-tolerant seeds. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols methods in molecular biology. Humana Press, Totowa, New Jersey, pp 185–202CrossRefGoogle Scholar
  27. Pritchard H, Ashmore S, Berjak P, Engelmann F, González-Benito M, Li D, Nadarajan J, Panis B, Pence V, Walters C (2009) Storage stability and the biophysics of preservation. Proc Plant Conservation for the Next Decade: a celebration of Kew’s 250th anniversary, 12–16 Oct 2009. Royal Botanic Garden Kew, LondonGoogle Scholar
  28. Pritchard H, Nadarajan J, Ballesteros D, Thammasiri K, Prasongsom S, Malik S, Chaudhury R, Kim H-H, Lin L, Li W-Q (2016) Cryobiotechnology of tropical seeds-scale, scope and hope. Int Symp Trop Subtrop Ornament 1167:37–48Google Scholar
  29. Rao NK, Hanson J, Dulloo ME, Ghosh K (2007) Manual para el Manejo de Semillas en Bancos de Germoplasma (Manuales para Bancos de Germoplasma No. 8). Bioversity International, RomeGoogle Scholar
  30. Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsworth Publishing Company, BelmontGoogle Scholar
  31. Sarmento MB, Schifino-Wittmann MT (2000) Different treatments and their effects on germination of Leucaena seeds. Rev Cient Rural 5:89Google Scholar
  32. Stanwood P, Bass L (1981) Seed germplasm preservation using liquid nitrogen. Seed Sci Technol 9:423Google Scholar
  33. Veiga-Barbosa L, Mira S, González-Benito M, Souza M, Meletti L, Pérez-García F (2013) Seed germination, desiccation tolerance and cryopreservation of Passiflora species. Seed Sci Technol 41:89–97CrossRefGoogle Scholar
  34. Vertucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage. II. The influence of temperature on optimal moisture levels. Seed Sci Res 3:201–213CrossRefGoogle Scholar
  35. Viloria H, Méndez Natera JR (2011) Relationship among electrical conductivity, pH of soaked-water, seed germination and seedling growth of corn (Zea mays L.) under two experimental conditions. Sci Agrop 2:213–228CrossRefGoogle Scholar
  36. Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C (2006) Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415CrossRefGoogle Scholar
  37. Zevallos B, Cejas I, Rodríguez RC, Yabor L, Aragón C, González J, Engelmann F, Martínez ME, Lorenzo JC (2013) Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters 34:413–421PubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2020

Authors and Affiliations

  • Yanier Acosta
    • 1
  • Lianny Pérez
    • 2
  • Claudia Linares
    • 2
  • Lázaro Hernández
    • 2
  • Doris Escalante
    • 2
  • Aurora Pérez
    • 2
  • Byron E. Zevallos
    • 3
  • Lourdes Yabor
    • 2
  • Marcos Edel Martínez-Montero
    • 2
  • Inaudis Cejas
    • 1
  • Dayamí Fontes
    • 1
  • Sershen
    • 4
  • José Carlos Lorenzo
    • 2
    Email author
  1. 1.Faculty of Agricultural SciencesUniversity of Ciego de ÁvilaCiego de ÁvilaCuba
  2. 2.Laboratory for Plant Breeding and Conservation of Genetic Resources, Bioplant CenterUniversity of Ciego de ÁvilaCiego de ÁvilaCuba
  3. 3.Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López (ESPAMMFL)Carrera de Ingeniería AgrícolaCalcetaEcuador
  4. 4.School of Life SciencesUniversity of Kwazulu-NatalDurbanSouth Africa

Personalised recommendations