Advertisement

Genetic and physiological analysis of early drought response in Manihot esculenta and its wild relative

  • 40 Accesses

Abstract

Cassava (Manihot esculenta) is a staple food crop mostly grown in the tropics. Successful cultivation in marginal areas derives from its ability to withstand difficult environmental conditions. Aiming at providing new insights into drought tolerance in Manihot spp., we performed physiological and molecular analyses of early drought response in three cassava varieties and in the wild species, Manihot glaziovii (maniçoba). Plants grown in pots were subjected to three water regimes for 5 days, based on soil field capacity (FC): 75% (well-watered plants); 45% (moderately stressed plants), and 20% (severely stressed plants), under greenhouse condition. Analysis of leaf gas exchange showed a downward trend in photosynthesis, stomatal conductance, and transpiration, with intensification of the stress, in all genotypes, being significantly reduced only at 20% FC. Maniçoba stood out for maintaining a positive carbon balance in severe stress condition via stomatal aperture control. Photoinhibition of the photosystem II by drought was also evident only at 20% FC. There was no clear association between proline accumulation and drought stress tolerance. Expression analysis of nine genes encoding heat-shock proteins, transcription factors, a cell redox homeostasis protein, and a no-hit protein confirmed the activation of classical stress-responsive pathways, especially those involved in oxidative damage avoidance. These results reinforce the intrinsic drought tolerance of cassava, highlight the superior performance of maniçoba under water deficit conditions, and give insights into drought phenotyping in cassava and contribute to further development of functional molecular markers to be used in assisted breeding.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aglawe SB, Fakrudin B, Patole CB et al (2012) Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. Physiol Mol Biol Plants 18:287–300. https://doi.org/10.1007/s12298-012-0135-5

  2. Alves AAC, Setter TL (2004) Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ Exp Bot 51:259–271. https://doi.org/10.1007/s12298-012-0135-510.1016/j.envexpbot.2003.11.005

  3. Barrs HD, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

  4. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

  5. Beltrán J, Jaimes H, Echeverry M et al (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. Vitr Cell Dev Biol - Plant 45:48–56. https://doi.org/10.1007/s12298-012-0135-510.1007/s11627-008-9159-5

  6. Betti M, Pérez-Delgado C, García-Calderón M et al (2012) Cellular stress following water deprivation in the model legume Lotus japonicus. Cells 1:1089–1106. https://doi.org/10.1007/s12298-012-0135-510.3390/cells1041089

  7. Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

  8. Calatayud P-A, Llovera E, Bois JF, Lamaze T (2000) Photosynthesis in drought-adapted Cassava. Photosynthetica 38:97–104. https://doi.org/10.1007/s12298-012-0135-510.1023/A:1026704226276

  9. de Oliveira EJ, de Aidar S, Morgante CV et al (2015) Genetic parameters for drought-tolerance in cassava. Pesqui Agropecu Bras 50:233–241. https://doi.org/10.1007/s12298-012-0135-510.1590/S0100-204X2015000300007

  10. de Oliveira EJ, Morgante CV, de Tarso AS et al (2017) Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica 213:188. https://doi.org/10.1007/s12298-012-0135-510.1007/s10681-017-1972-7

  11. de Souza AP, Massenburg LN, Jaiswal D et al (2017) Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytol 213:50–65. https://doi.org/10.1007/s12298-012-0135-510.1111/nph.14250

  12. El-Sharkawy MA (2007) Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz J Plant Physiol. 19:257–286

  13. El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501. https://doi.org/10.1007/s11103-005-2270-7

  14. El-Sharkawy MA, Cock JH, de Cadena G (1984) Stomatal characteristics among cassava cultivars and their relation to gas exchange. Exp Agric 20:67–76

  15. El-Sharkawy MA, Cock JH, Del Pilar HA (1985) Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth Res 7:137–149. https://doi.org/10.1007/BF00037004

  16. FAO (2014) Faostat—Food and Agriculture Organization of the United Nations statistics database

  17. Ferreira EB, Cavalcanti, PP, Nogueira DA (2018) ExPDes: Experimental Design. R Package version 1.2.0. https://cran.r-project.org/web/packages/ExpDes. Accessed 21 May 2018

  18. Fu L, Ding Z, Han B et al (2016) Physiological investigation and transcriptome analysis of polyethylene glycol (PEG)-induced dehydration stress in cassava. Int J Mol Sci 17:283. https://doi.org/10.3390/ijms17030283

  19. Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15:405–414. https://doi.org/10.1111/pbi.12659

  20. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta Bioenerg 1817:182–193. https://doi.org/10.1016/j.bbabio.2011.04.012

  21. Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61:201–209. https://doi.org/10.1007/s10535-016-0700-9

  22. Khong GN, Pati PK, Richaud F et al (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169:2935–2949. https://doi.org/10.1104/pp.15.01192

  23. Kneeshaw S, Keyani R, Delorme-hinoux V et al (2017) Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc Natl Acad Sci 114:8414–8419. https://doi.org/10.1073/pnas.1703344114

  24. Li S, Yu X, Cheng Z et al (2017) Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front Plant Sci 8:1259. https://doi.org/10.3389/fpls.2017.01259

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262

  26. Lokko Y, Anderson JV, Rudd S et al (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618. https://doi.org/10.1007/s00299-007-0378-8

  27. Mendiburu F (2019) Agricolae: Statistical Procedures for Agricultural Research. R Package version 1.3-1. https://cran.r-project.org/web/packages/agricolae/. Accessed 21 May 2018

  28. Moore S, Stein W (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

  29. Morgante CV, Guimarães PM, Martins ACQ et al (2011) Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut. BMC Res Notes. https://doi.org/10.1186/1756-0500-4-339

  30. Nassar NM, Abreu LF, Teodoro DAP, Graciano-Ribeiro D (2010) Drought tolerant stem anatomy characteristics in Manihot esculenta (Euphorbiaceae) and a wild relative. Genet Mol Res 9:1023–1031. https://doi.org/10.4238/vol9-2gmr800

  31. Nassar NMA (2000) Wild cassava, Manihot spp.: biology and potentialities for genetic improvement. Genet Mol Biol 23:201–212. https://doi.org/10.1590/S1415-47572000000100035

  32. Okogbenin E, Setter TL, Ferguson M et al (2013) Phenotypic approaches to drought in cassava : review. Front Physiol 4:1–16. https://doi.org/10.3389/fphys.2013.00093

  33. Pereira LFM, Zanetti S, de Silva M (2017) Water relations of cassava cultivated under water-deficit levels. Acta Physiol Plant 40:13. https://doi.org/10.1007/s11738-017-2590-7

  34. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/30.9.e36

  35. Ren MY, Feng RJ, Shi HR et al (2017) Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava. PLoS ONE ONE 12:1–24. https://doi.org/10.1371/journal.pone.0177621

  36. Rizhsky L, Liang H, Shuman J et al (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. https://doi.org/10.1104/pp.103.033431.1

  37. Sakamoto H, Maruyama K, Sakuma Y et al (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746. https://doi.org/10.1104/pp.104.046599.2734

  38. Shan Z, Luo X, Wei M et al (2018) Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-35711-x

  39. Sundaresan S, Sudhakaran PR (1995) Water stress-induced alterations in the proline metabolism of drought-susceptible and -tolerant cassava (Manihot esculenta) cultivars. Physiol Plant 94:635–642. https://doi.org/10.1111/j.1399-3054.1995.tb00978.x

  40. Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

  41. Turyagyenda LF, Kizito EB, Ferguson M et al (2013) Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AOB Plants 5:7. https://doi.org/10.1093/aobpla/plt007

  42. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:1–12. https://doi.org/10.1093/nar/gks596

  43. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150. https://doi.org/10.1007/BF00033156

  44. Wang B, Guo X, Zhao P et al (2017) Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms (Manihot esculenta Cranz). PLoS ONE One 12:e0177456. https://doi.org/10.1371/journal.pone.0177456

  45. Wang D, Pan Y, Zhao X et al (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12:149. https://doi.org/10.1186/1471-2164-12-149

  46. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. https://doi.org/10.1016/j.tplants.2004.03.006

  47. Yang J, An D, Zhang P (2011) Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Biol 53:193–211. https://doi.org/10.1111/j.1744-7909.2010.01018.x

  48. Yin M, Wang Y, Zhang L et al (2017) The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. J Exp Bot 68:2991–3005. https://doi.org/10.1093/jxb/erx157

  49. Yu X, James AT, Yang A et al (2016) A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress. Crop Pasture Sci 67:528–540. https://doi.org/10.1071/CP15314

  50. Zhang D, Tong J, Xu Z et al (2016) Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci 7:325. https://doi.org/10.3389/fpls.2016.00325

  51. Zhao L, Ding Q, Zeng J et al (2012) An improved CTAB—ammonium acetate method for total RNA isolation from cotton. Phytochem Anal 23:647–650. https://doi.org/10.1002/pca.2368

  52. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. https://doi.org/10.1089/cmb.2005.12.1047

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial assistance and scholarship support.

Author information

Correspondence to Carolina Vianna Morgante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. Kovacik.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgante, C.V., Nunes, S.P., Chaves, A.R. et al. Genetic and physiological analysis of early drought response in Manihot esculenta and its wild relative. Acta Physiol Plant 42, 22 (2020). https://doi.org/10.1007/s11738-019-3005-8

Download citation

Keywords

  • Cassava
  • Manihot glaziovii
  • Water deficit
  • Gene expression analysis
  • RT-qPCR