Skip to main content

Advertisement

Log in

Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

One of the important limiting factors to realising the benefits of modern high- yielding crop varieties is the availability of iron (Fe) in the soil, which often leads to Fe deficiency in food grains. The main objective of this study was to evaluate the role of two siderophore-producing endophytes (Arthrobacter sulfonivorans DS-68 and Enterococcus hirae DS-163) in the biofortification of grains with Fe and enhance yield in four genotypes of wheat (Triticum aestivum L.) in soils with low and high available Fe content. Endophyte inoculation increased the surface area, volume, length of roots and number of root tips by 78.27, 75, 71 and 44%, respectively, relative to the uninoculated control (recommended dose of fertilizers; RDF), across genotypes and soil types. In the low available-Fe soil, inoculation with endophytes increased grain yield twofold relative to the control (RDF), whereas in the high available-Fe soil, the increase was only 1.2-fold across genotypes. In general, endophyte inoculation caused an increase of 1.5-fold and 2.2-fold in iron concentration in grains over the RDF + FeSO4 treatment and uninoculated control (RDF), respectively, across all the genotypes and both soil types. Such siderophore-producing endophytes can be recommended as bioinoculants to mitigate iron deficiencies in the soil and enhance crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):64

    Google Scholar 

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39:1216–1232

    CAS  Google Scholar 

  • Alloway BJ (ed) (2008) Micronutrient deficiencies in global crop production. Springer, Dordrecht

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    CAS  PubMed  Google Scholar 

  • Aras S, Arıkan Ş, İpek M, Eşitken A, Pırlak L, Dönmez MF, Turan M (2018) Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiol Plant 40(6):120

    Google Scholar 

  • Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee IJ, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    PubMed  Google Scholar 

  • Astolfi S, Pii Y, Terzano R, Mimmo T, Celletti S, Allegretta I, Lafiandra D, Cesco S (2018) Does Fe accumulation in durum wheat seeds benefit from improved whole-plant sulfur nutrition? J Cereal Sci 83:74–82

    CAS  Google Scholar 

  • Badakhshan H, Namdar M, Mohammadzadeh H, Mohammad RZ (2013) Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. Int J Agric Crop Sci 6:57–62

    CAS  Google Scholar 

  • Batista RO, Furtini Neto AE, Deccetti SFC, Viana CS (2016) Root morphology and nutrient uptake kinetics by Australian cedar clones. Rev Caatinga 29(1):153–162

    Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi J, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutri Bull 32:S31–S40

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Cakmak I, Kalayaci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    CAS  PubMed  Google Scholar 

  • Celletti S, Pii Y, Mimmo T, Cesco S, Astolfi S (2016) The characterization of the adaptive responses of durum wheat to different Fe availability highlights an optimum Fe requirement threshold. Plant Physiol Biochem 109:300–307

    CAS  PubMed  Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity of grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chellan R, Paul L (2010) Prevalence of iron anemia in India: results from a large nationwide survey. J Popul Soc Sci 19(1):59–80

    Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    CAS  PubMed  Google Scholar 

  • Clark WC, Tomich TP, Van Noordwijk M, Guston D, Catacutan D, Dickson NM, McNie E (2016) Boundary work for sustainable development: Natural Resource Management at the Consultative Group on International Agricultural Research (CGIAR). Proc Natl Acad Sci India 113:4615–4622

    CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Lima L, Olivares FL, De Oliveira RR, Vega MRG, Aguiar NO, Canellas LP (2014) Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids. Chem Biol Technol Agric 1(1):1

    Google Scholar 

  • Das SK, Avasthe RK (2018) Plant nutrition management strategy: a policy for optimum yield. Acta Sci Agric 2(5):65–70

    Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    CAS  PubMed  Google Scholar 

  • Directorate of Economics and Statistics (2016) Department of Agriculture, Co-operation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, Krishi Bhavan, New Delhi. Agricultural statistics at a glance. http://eands.dacnet.nic.in

  • Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57(5):621–629

    Google Scholar 

  • Food and Nutrition Board (2001) Dietary reference intakes of vitamin A, vitamin K, boron, chromium, copper, iodine, manganese, molybdenum, nickel, silicon, vanadium and zinc. Food and Nutrition Board, Institute of Medicine, National Academic Press, Washington, DC

    Google Scholar 

  • Forouzanfar MH et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323

    Google Scholar 

  • Frossard E, Bucher M, Mächler Mozafar FA, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Kumar CS (2016) Plant growth-promotion and biofortification of chickpea and pigeon pea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springer Plus 5(1):1882

    PubMed  Google Scholar 

  • Goudia BD, Hash CT (2015) Breeding for high grain Fe and Zn levels in cereals. Int J Innov Appl Stud 12(2):342–354

    CAS  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120

    CAS  PubMed  Google Scholar 

  • IIPS (2000) National Family Health Survey (NFHS-2), 1998–99: India. International Institute for Population Sciences, Mumbai

    Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    CAS  PubMed  Google Scholar 

  • Kabir AH, Khatun MA, Hossain MM, Haider SA, Alam MF, Paul NK (2016) Regulation of phytosiderophore release and antioxidant defense in roots driven by shoot-based auxin signaling confers tolerance to excess iron in wheat. Front Plant Sci. 7:1684

    PubMed  PubMed Central  Google Scholar 

  • Kassebaum NJ et al (2014) A systematic analysis of global anemia burden from 1990–2010. Blood 123(5):615–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP, Young SD, Broadley MR (2018) Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS ONE 13(1):e0192026. https://doi.org/10.1371/journal.pone.0192026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of vam mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytol 116:637–645

    CAS  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB, Jaiswal JP, Singh GP, Solanki IS (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS ONE 12(4):e0174972. https://doi.org/10.1371/journal.pone.0174972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Liu K, Yue R, Yuan C, Liu J, Zhang L, Sun T, Yang Y, Tie S, Shen C (2015) Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice (Oryza sativa L.). J Plant Biol 58(6):391–401

    CAS  Google Scholar 

  • Lockhart K, King A, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Mahajan A, Gupta RD (2009) Integrated nutrient management (INM) in a sustainable rice-wheat cropping system. Springer, Dordrecht

    Google Scholar 

  • Malewar GU, Ismail S (1995) Iron research and agricultural production. In: Tandon HLS (ed) Micronutrient research and agricultural production, vol 1. Fertiliser Development and Consultation Organisation, New Delhi, pp 57–82

    Google Scholar 

  • Malhi SS, Nyborg M, Harapiak JT (1998) Effects of long-term N fertilizer induced acidification and liming on micronutrients in soil and in brome grass hay. Soil Tillage Res 48:91–101

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Boston

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159(1):89–102

    CAS  Google Scholar 

  • Mhoro L, Semu E, Amuri N, Msanya BM, Munishi JA, Malley Z (2015) Growth and yield responses of rice, wheat and beans to Zn and Cu fertilizers in soils of Mbeya region, Tanzania. Int J Agric Policy Res 3(11):402–411

    Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35(11):3075–3084

    CAS  Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, vol 939. United State Department of Agriculture, Washington, DC

    Google Scholar 

  • Oury FX, Leenhardt F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron 25:177–185

    CAS  Google Scholar 

  • Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    CAS  PubMed  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    CAS  PubMed  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1:995807

    Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    CAS  Google Scholar 

  • Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with Rhizobium on green gram. J Plant Nutr 33(2):285–298

    CAS  Google Scholar 

  • Rengel Z, Graham RD (1995) Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. Plant Soil 176(2):317–324

    CAS  Google Scholar 

  • Römheld V, Marschner H (1991) Function of micronutrients in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 297–328

    Google Scholar 

  • Rose MT, Pariasca-Tanaka J, Rose TJ, Wissuwa M (2011) Bicarbonate tolerance of Zn-efficient rice genotypes is not related to organic acid exudation, but to reduced solute leakage from roots. Funct Plant Biol 38:493–504

    CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29(3):353–369. https://doi.org/10.1080/15427528.2015.1027979

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    CAS  PubMed  Google Scholar 

  • Shukla AK, Tiwari PK, Prakash C (2014) Micronutrients deficiencies vis-a-vis food and nutritional security of India. Indian J Fertil 10(12):94–112

    Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils: a global study. Food and Agricultural Organization, Rome

    Google Scholar 

  • Singh D (2016) Enhancement of uptake and translocation of micronutrients in wheat by using endophytes. PhD thesis. IARI Post Graduate School, New Delhi

  • Singh D, Chhonkar PK, Pandey RN (1999) Soil plant water analysis: a methods manual. Indian Agricultural Research Institute, New Delhi, pp 11–16

    Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2017a) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182. https://doi.org/10.1007/s00344-017-9716-4

    Article  CAS  Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017b) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416(1–2):107–116

    CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Saxena AK (2018) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield and micronutrient content. Ann Microbiol 68:815–833. https://doi.org/10.1007/s13213-018-1388-1

    Article  CAS  Google Scholar 

  • Standfold S, English L (1949) Use of flame photometer in rapid soil test for K and Ca. Agron J 41:446–447

    Google Scholar 

  • Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Pena-Rosas JP, Bhutta ZA, Ezzati M (2013) Global, regional and national trends in haemoglobin concentration and prevalence of severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population representative data. Lancet Global Health 1(1):e16–e25

    PubMed  Google Scholar 

  • Stewart CP, Dewey KG, Ashoran P (2010) The undernutrition epidemic: an urgent health priority. Lancet 375:282

    PubMed  Google Scholar 

  • Stoltzfus RJ, Mullany L, Black RE (2004) Iron deficiency anaemia. In: Ezzati M, et al. (eds) Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. World Health Organization, Geneva, pp 163–210

    Google Scholar 

  • Subbiah B, Asija G (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19(5):466–469

    CAS  PubMed  Google Scholar 

  • Talaat NB, Shawky BT (2013) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol Plant 35(8):2601–2610

    CAS  Google Scholar 

  • Tian X, Lu X, Mai W, Yang X, Li S (2008) Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants. Soils 40(3):425–431

    CAS  Google Scholar 

  • Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78:225–231

    CAS  PubMed  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Singh RP, Payne T (2011) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J Crop Sci 3:43–48

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102(38):13386–13391

    CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Shahzad R, Ullah I, Khan AR, Lee IJ (2015) Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ Sci B 16(12):1011–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, Shuman L (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2011) The global prevalence of anaemia in 2011. World Health Organization, Geneva

    Google Scholar 

  • Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512:415–427

    PubMed  Google Scholar 

  • Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang DA (2014) OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J 79(1):106–117

    CAS  PubMed  Google Scholar 

  • Zamboni A, Celletti S, Zenoni S, Astolfi S, Varanini Z (2017) Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environ Exp Bot 143:172–184

    CAS  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank ICAR-Indian Agricultural Research Institute and Indian Council of Agricultural Research (ICAR), New Delhi for the financial support through NASF project. The Division of Microbiology, ICAR-IARI, New Delhi is gratefully acknowledged for the facilities provided, during the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Geat, N., Rajawat, M.V.S. et al. Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation. Acta Physiol Plant 42, 24 (2020). https://doi.org/10.1007/s11738-019-2997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2997-4

Keywords

Navigation