Acta Physiologiae Plantarum

, 41:194 | Cite as

Enhanced thebaine and noscapine production and modulated gene expression of tyrosine/dopa decarboxylase and salutaridinol 7-O-acetyltransferase genes in induced autotetraploid seedlings of Papaver bracteatum Lindl

  • Hadi Madani
  • Bahman HosseiniEmail author
  • Ghasem Karimzadeh
  • Amir Rahimi
Original Article


Papaver bracteatum, belonging to Papaveraceae, is considered to be a primary ingredient in the production of codeine and anti-drug drugs (e.g., naloxone and Naltrexone) without the involvement of morphine. For polyploidy induction, papaver seedlings were treated with various colchicine concentrations (0, 0.05, 0.1, 0.2 and 0.5% w/v) in three time durations (24, 48 and 72 h). The effects of polyploidy induction on morphological, physiological, alkaloid production and gene expression levels in the pathway of benzylisoquinoline alkaloids were analyzed. High rates of seedling survival were observed at lower colchicine concentrations (0.05 and 0.1% w/v) versus higher concentrations (0.2 and 0.5% w/v). The best polyploidy treatment to induce P. bracteatum shoot tips was observed in plants treated with 0.2% colchicine for 72 h. P. bracteatum-induced tetraploids showed higher stomata and an increase in leaf area (mm2), chlorophyll (a, b and total) and a decrease in stomata density, leaf length (cm) and petiole length. Flow cytometry and chromosome counting analysis revealed that chromosome number was 2n = 2x = 14 in diploid plants and 2n = 4x = 28 in tetraploid plants. Gene expression analysis through semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that the transcription level of sat and tydc genes of the benzylisoquinoline biosynthesis pathway was enhanced in tetraploid plants. The tetraploid plants of P. bracteatum also showed 5.86 and 30.55 times higher thebaine and noscapine contents than the diploid plants, respectively. Regarding the higher commercial value of thebaine and noscapine, tetraploids can efficiently be used to improve the thebaine and noscapine production of P. bracteatum.


Colchicine Flow cytometry P. bracteatum Thebaine Tetraploidy 



  1. Abdoli M, Moieni A, Badi HN (2013) Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea L. Acta Physiol Plant 35(7):1–9Google Scholar
  2. Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploidy plants. Trends Genet 10(21):539–543Google Scholar
  3. Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci Hort. 88(4):277–287Google Scholar
  4. Ajalin I, Kobza F, Dolezel J (2002) Ploidy identification of doubled chromosome number plants in Viola × witrockiana Gams. M1- generation. Hortic Sci. 29(1):35–40Google Scholar
  5. Albuzio A, Spettoli P, Cacco G (2006) Changes in gene expression from diploid to autotetraploid status of Lycopersicon esculentum. Physiol Plant 44:77–80Google Scholar
  6. Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. Hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984PubMedGoogle Scholar
  7. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiol. 24:1–15PubMedGoogle Scholar
  8. Berkov S (2001) Size and alkaloid content of seeds in induced autotetraploids of Datura innoxia, Datura stramonium and Hyoscyamus niger. Pharm Biol. 39(5):329–331Google Scholar
  9. Berkov S, Philipov S (2002) Alkaloid production in diploid and autotetraploid plants of Datura stramonium. Pharm Biol. 40(8):617–621Google Scholar
  10. Caruso I, Lepore L, De Tommasi N, Dal Piaz F, Frusciante L, Aversano R, Garramone R, Carputo D (2011) Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem Biodivers 8(12):2226–2237PubMedGoogle Scholar
  11. Cheng ZM, Korban S (2011) In vitro ploidy manipulation in the genomics era. Plant Cell, Tissue Organ Cult 104:281–282Google Scholar
  12. Coffman CB, Bare CE, Gentner WA (1975) Thebaine variations between germplasm sources within one collection of Papaver bracteatum. B narcotics. 27:41–46Google Scholar
  13. Dhooghe E, Van Laere K, Eeckhaut T, Leus V, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373Google Scholar
  14. Facchini PJ, Penzes-Yost C, Samanani N, Kowalchuk N (1998) Expression Patterns Conferred by Tyrosine/Dihydroxyphenylalanine Decarboxylase Promoters from Opium Poppy Are Conserved in Transgenic Tobacco. Plant Physiol 118(1):69–81PubMedPubMedCentralGoogle Scholar
  15. Gao S, Zhu D, Cai Z, Xu D (1996) Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tiss Organ Cult 47(1):73–77Google Scholar
  16. Gao SL, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tiss Organ Cult 70:289–293Google Scholar
  17. Ghotbi Ravandi E, Rezanejad F, Zolala J, Dehghan E (2013) The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. J Hortic Sci Biotechnol. 88(8):701–709Google Scholar
  18. Griesbach RJ (1990) Colchicine-induced polyploidy in Eustoma grandiflorum. Sci Hort. 25:1284–1286Google Scholar
  19. Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276(33):30717–30723PubMedGoogle Scholar
  20. Guo M, Davis D, James A (1996) Birchler dosage effects on gene expression in a maize ploidy series. Genet Soc Am 142(4):1349–1355Google Scholar
  21. Hamill S, Smith M, Dodd W (1992) In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust J Bot 40(6):887–896Google Scholar
  22. He M, Jiang L, Ren Z, Wang G, Wang J (2016) Noscapine targets EGFRp-Tyr1068 to suppress the proliferation and invasion of MG63 cells. Sci. Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Javadian N, Karimzadeh G, Sharifi M, Moieni A, Behmanesh M (2017) In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta. CrossRefPubMedGoogle Scholar
  24. Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N, Prathanturarug S (2011) In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss Organ Cult 107(2):187–194Google Scholar
  25. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5(4):239–242PubMedGoogle Scholar
  26. Kerr D, Dietze P (2008) Kelly AM Intranasal naloxone for the treatment of suspected heroin overdose. Addiction 103(3):379–386PubMedGoogle Scholar
  27. Kettenes-van de Bosch JJ, Salemink CA, Khan I (1981) Biological activity of the alkaloids of Papaver bracteatum Lind. J Ethnopharmacol 3(1):21–38Google Scholar
  28. Kim CS, Park JB, Kim KJ, Chang SJ, Ryoo SW, Jeon BH (2002) Effect of Korea red ginseng (Panax ginseng) on cerebral blood flow and superoxide production. Acta Pharmacol. 23:1152–1156Google Scholar
  29. Kondorosi E, Roudier F, Gendrau E (2000) Plant cell-size: growing by ploidy. Curr Opin Plant Biol 3:488–492PubMedGoogle Scholar
  30. Lin X, Zhou Y, Zhang J, Lu X, Zhang F, Shen Q, Wu S, Chen Y, Wang T, Tang K (2011) Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnol Appl Biochem 58(1):50–57PubMedGoogle Scholar
  31. Liu S, Chen S, Chen Y, Guan Z, Yin D, Chen F (2011) In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. Shows an improved level of abiotic stress tolerance. Sci Hort. 127(3):411–419Google Scholar
  32. Machara A, Werner L, Ann Endoma-Arias M, Cox DF, Hudlicky T (2012) Improved synthesis of buprenorphine from thebaine and/or oripavine via palladium-catalyzed N-demethylation/acylation and/or concomitant O-demethylation. Adv Synth Catal 354:613–626Google Scholar
  33. Madani H, Hosseini B, Dehghan E, Rezaei- chiyaneh E (2015) Enhanced production of scopolamine in induced autotetraploid plants of Hyoscyamus reticulatus L. Acta Physiol Plant 37:55Google Scholar
  34. Mathura S, Fossey A, Beck SL (2006) Comparative study of chlorophyll content in diploid and tetraploid black wattle (Acacia mearnsii). Forestry 79:381–388Google Scholar
  35. Milo J, Levy A, Palevitch D, Ladizinsky G (1987) Thebaine content and yield in induced tetraploid and triploid plants of Papaver bracteatum Lindl. Euphytica 36:361–367Google Scholar
  36. Milo J, Levy A, Ladizinsky G, Palevitch D (1988) Phylogenetic and genetic studies in Papaver section Oxytona: cytogenetics, isozyme analysis and chloroplast DNA variation. Theor Appl Genet 75:795–802Google Scholar
  37. Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S (2010) Modulated gene expression in newly synthesized auto tetraploid of Papaver somniferum L. S Afr J Bot 76:447–452Google Scholar
  38. Neubauer D, Mothes K (1963) Uber Papaver bracteatum I. Mitteilung, ein neuer weg zur gewinnung von morphinanen auf pflanztichef rohstoffbasis. Planta Med 11:387–391Google Scholar
  39. Omidbaigi R, Mirzaee M, Hassani ME, Sedghi Moghadam M (2010a) Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. Int J Plant Prod. 4:1735–8043Google Scholar
  40. Omidbaigi R, Yavari S, Hassani ME, Yavari S (2010b) Induction of autotetraploidy in dragonhead (Dracocephalum moldavica L.) by colchicine treatment. J. Fruit Ornam. Plant Res. 18:23–35Google Scholar
  41. Palevitch D, Levy A (1983) Cultural and genetic factors affecting thebaine yield in Papaver bracteatum Lindl. Acta Hort 132:189–195Google Scholar
  42. Rey H, Sansberro B, Collavino M, Davina J, Gonzalez A, Mroginski L (2002) Colchicine, trifluralin and oryzalin promoted development of somatic embryos in Ilex paraguariensis (Aquifoliaceae). Euphytica 123:49–56Google Scholar
  43. Rinner U, Hudlicky T (2012) Synthesis of morphine alkaloids and derivatives. Top Curr Chem 309:33–66PubMedGoogle Scholar
  44. Rowson JM (1949) Increased alkaloid contents of induced polyploid of Datura. Nature Rev Genet. 154:81–82Google Scholar
  45. Rubuluza T, Nikolova RV, Smith MT, Hannweg K (2007) In vitro induction oftetraploids in Colophospermum mopane by colchicine. South Afri J Bot. 73:259–261Google Scholar
  46. Sadat Noori SA, Norouzi M, Karimzadeh G, Shirkool K, Niazian M (2017) Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss Organ Cult 130(3):543–551Google Scholar
  47. Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG, Khachane A, Kumar B, Rajasimha HK, Levi A, Wehner T, Reddy UK (2015) Differential gene expression and alternative splicing between diploid and tetraploid watermelon. J Exp Bot 66(5):1369–1385PubMedGoogle Scholar
  48. Seddigh M, Jolliff GD, Calhoun W, Crane JM (1982) Papaver bracteatum, potential commercial source of codeine. Econ Bot 36:433–441Google Scholar
  49. Shahriari-Ahmadi F, Dehghan E, Farsi M, Azizi M (2009) Tetraploid Induction of Hyoscyamus muticus L. using Colchicine Treatment. Pak J Biol Sci 11(24):2653–2659Google Scholar
  50. Swanson CP (1957) Cytol cytogenet. Carl P, Swanson, p 596Google Scholar
  51. Talebi SF, Saharkhiz MJ, Jafarkhani Kermani M, Sharafi Y, Raouf Fard F (2016) Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Inte J Cytol Cytosyst Cytogen. 70(2):184–193Google Scholar
  52. Tang ZQ, Chen DL, Song ZJ, He YC, Cai DT (2010) In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tiss Organ Cult 102(2):213–220Google Scholar
  53. Tarkesh Esfahani S, Karimzadeh G, Naghavi MR (2016) 2C DNA value of persian poppy (Papaver bracteatum Lindl.) medicinal plant as revealed by flow cytometry analysis; a quick effective criteria for distinguishing unidentified papaver species. Int J Adv Biotechnol Res. 7(2):573–578Google Scholar
  54. Wallaart TE, Pras N, Quax WJ (1999) Seasonal variations of artemisinin and its biosynthetic precursors in tetraploid Artemisia annua plants compared with the diploid wild-type. Planta Med 65:723–728Google Scholar
  55. Wendel JF, Doyle JJ (2005) Polyploidy and evolution in plants. In: Henry RJ (ed) Plant diversity and evolution. CABI Publishing, Wallingford, UK, pp 97–117Google Scholar
  56. Zahedi AA, Hosseini B, Fattahi M, Dehghan E, Parastar H, Madani H (2014) Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Bot Stud. 55:22PubMedPubMedCentralGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  1. 1.Department of Horticulture, Faculty of AgricultureUrmia UniversityUrmiaIran
  2. 2.Department of Plant Genetics and Breeding, Faculty of AgricultureTarbiat Modares UniversityTehranIran
  3. 3.Department of Agronomy, Faculty of AgricultureUrmia UniversityUrmiaIran

Personalised recommendations