OsRhoGAP2 promoter drives inflorescence-preferential expression and confers responses to abiotic stresses in transgenic Arabidopsis

  • Junjun Huang
  • Xintian Yan
  • Jiajia Li
  • Jia Shi
  • Jingjing Peng
  • Jingyao Du
  • Huiwen Ge
  • Meina Wang
  • Wenjing An
  • Kaijie Wang
  • Huahua Wang
  • Weihong LiangEmail author
Original Article


Plants deploy different strategies to respond and adapt to various stresses. Given that stresses affect plant growth and activity, the responses and tolerance of crops to stresses must be improved through genetic engineering. Inducible promoters, which have vital roles in gene expression and function, are highly desired in biotechnology applications. Thus, novel inducible promoters must be isolated and identified for genetic engineering to improve crop stress responses and tolerance. OsRhoGAPs are involved in plant defense against diverse stresses. In this study, we identified OsRhoGAP2, which is preferentially expressed in rice inflorescences. We isolated the OsRhoGAP2 promoter and analyzed its functions in transgenic Arabidopsis. We fused the GUS reporter with six 5′ deletion fragments (gp1–gp6) of the OsRhoGAP2 promoter with different lengths. Through histochemical analysis, we detected GUS activity in the inflorescences of transgenic Arabidopsis containing gp1, gp3, gp4, and gp5 constructs but not in transgenic Arabidopsis containing gp2 and gp6 constructs. The GUS activity in transgenic plants containing gp1–gp6 constructs changed under different stress treatments. Bioinformatics analysis and experimental results revealed that the core fragment involved in the inflorescence-preferential expression of OsRhoGAP2 and stress responses may be located in the − 706 bp to + 1 bp, or the translated start site, of OsRhoGAP2. Results indicate that OsRhoGAP2 has a conserved role in stress tolerance and exhibits tissue-specific expression patterns in several plant species. This work provides novel insights into the appropriate promoter resources for plant genetic transformation and useful references for biotechnologists to improve stress tolerance in rice.


OsRhoGAP2 Promoter Abiotic stress GUS Transgenic 



This work was supported by the National Natural Science Foundation of China (Grant nos. 31701508, U1704101, and 31171182) and Program for Innovative Research Team in Science and Technology in University of Henan Province (15IRTSTHN020).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.


  1. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296(5575):2026–2028. CrossRefPubMedGoogle Scholar
  2. Chen L, Tu Z, Hussain J, Cong L, Yan Y, Jin L, Yang G, He G (2010) Isolation and heterologous transformation analysis of a pollen-specific promoter from wheat (Triticum aestivum L.). Mol Biol Rep 37:737–744. CrossRefPubMedGoogle Scholar
  3. Chen X, Naramoto S, Robert S, Tejos R, Lofke C, Lin D, Yang Z, Friml J (2012) ABP1 and ROP6 GTPase signaling regulate clathrin mediated endocytosis in Arabidopsis roots. Curr Biol 22:1326–1332. CrossRefPubMedGoogle Scholar
  4. Chen L, Jiang B, Wu C, Sun S, Hou W, Han T (2015) The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter. Plant Cell Tissue Organ Cult 121:259–274. CrossRefGoogle Scholar
  5. Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW, Ok SH, Bae JM, Shin JS (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549CrossRefGoogle Scholar
  6. Cheung MY, Zeng NY, Tong SW, Li WY, Xue Y, Zhao KJ, Wang C, Zhang Q, Fu Y, Sun Z, Sun SS, Lam HM (2008) Constitutive expression of a rice GTPase-activating protein induces defense responses. New Phytol 179(2):530–545CrossRefGoogle Scholar
  7. Cheung MY, Xue Y, Zhou L, Li MW, Sun SS, Lam HM (2010) An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. J Biol Chem 285:37359–37369. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheung MY, Li X, Yung YL, Wen CQ, Lam HM (2013) The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ 36(11):2008–2020. CrossRefPubMedGoogle Scholar
  9. Chung KJ, Hwang SK, Hahn BS, Kim KH, Kim JB, Kim YH, Yang JS, Ha SH (2008) Authentic seed-specific activity of the Perilla oleosin 19 gene promoter in transgenic Arabidopsis. Plant Cell Rep 27:29–37. CrossRefPubMedGoogle Scholar
  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  11. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581CrossRefGoogle Scholar
  12. Deikman J, Xu RL, Kneissl ML, Ciardi JA, Kim KN, Pelah D (1998) Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene. Plant Mol Biol 37:1001–1011CrossRefGoogle Scholar
  13. Diaz-De-Leon F, Klotz LK, Lagrimini LM (1993) Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol 101:1117–1118CrossRefGoogle Scholar
  14. Fao (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)-managing systems at risk. Accessed Oct 2017
  15. Han YJ, Kim YM, Hwang OJ, Kim JI (2015) Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Rep 34:265–275. CrossRefPubMedGoogle Scholar
  16. Hoefle C, Huckelhoven R (2014) A barley Engulfment and Motility domain containing protein modulates Rho GTPase activating protein HvMAGAP1 function in the barley powdery mildew interaction. Plant Mol Biol 84:469–478. CrossRefPubMedGoogle Scholar
  17. Hoefle C, Huesmann C, Schultheiss H, Börnke F, Hensel G, Kumlehn J, Hückelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23(6):2422–2439. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Huda KM, Banu MS, Pathi KM, Tuteja N (2013) Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ ATPase mediates environmental stress responses in plants. PLoS ONE 8:e57803. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18(24):1907–1916. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907CrossRefGoogle Scholar
  21. Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol Biol 39:35–44CrossRefGoogle Scholar
  22. Jiang SY, Ramachandran S (2006) Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genom 24:235–251. CrossRefGoogle Scholar
  23. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291. CrossRefPubMedGoogle Scholar
  24. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350CrossRefGoogle Scholar
  25. Kaur C, Kumar G, Kaur S, Ansari MW, Pareek A, Sopory SK, Singla-Pareek SL (2015) Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2). Mol Biol Rep 42:1139–1148. CrossRefPubMedGoogle Scholar
  26. Kosami K, Ohki I, Nagano M, Furuita K, Sugiki T, Kawano Y, Kawasaki T, Fujiwara T, Nakagawa A, Shimamoto K, Kojima C (2014) The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase. J Biol Chem 289(41):28569–28578. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lang Z, Zhou P, Yu J, Ao G, Zhao Q (2008) Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 227:387–396. CrossRefPubMedGoogle Scholar
  28. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRefGoogle Scholar
  29. Li Y, Sun Y, Yang Q, Kang J, Zhang T, Gruber MY, Fang F (2012) Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Mol Biol Rep 39:8559–8569. CrossRefPubMedGoogle Scholar
  30. Lin D, Nagawa S, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, Scheres B, Fu Y, Yang Z (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22:1319–1325. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu J, Park CH, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang GL (2015) The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog 11(2):e1004629. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25:402–408. CrossRefGoogle Scholar
  33. Lü S, Gu H, Yuan X, Wang X, Wu A, Qu L, Liu J (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16:177–191. CrossRefPubMedGoogle Scholar
  34. Moon H, Callahan AM (2004) Developmental regulation of peach ACC oxidase promoter–GUS fusions in transgenic tomato fruits. J Exp Bot 55:1519–1528. CrossRefPubMedGoogle Scholar
  35. Nibau C, Tao LZ, Levasseur K, Wu HM, Cheung AY (2013) The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signaling. J Exp Bot 64(11):3425–3437. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Noh SA, Lee HS, Huh GH, Oh MJ, Paek KH, Shin JS, Bae JM (2012) A sweet potato SRD1 promoter confers strong root-, tap root-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 21:265–278. CrossRefPubMedGoogle Scholar
  37. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812CrossRefGoogle Scholar
  38. Opsahl-Sorteberg HG, Divon HH, Nielsen PS, Kalla R, Hammon-Kosach M, Shimamoto K, Kohli A (2004) Identification of a 49-bp fragment of the HvLTP2 promoter directing aleurone cell specific expression. Gene 341:49–58. CrossRefPubMedGoogle Scholar
  39. Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J (2015) Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241:57–67. CrossRefPubMedGoogle Scholar
  40. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1. CrossRefGoogle Scholar
  41. Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res 18:787–799. CrossRefPubMedGoogle Scholar
  42. Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166:1634–1645. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS, Senthil-Kumar M (2017) GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep 7(1):9148. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia AC, Peirats-Llobet M, Fernandez MA, Antoni R, Fernandez D, Marquez JA, Mulet JM, Albert A, Rodriguez PL (2014) C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 26:4802–4820. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twel D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585CrossRefGoogle Scholar
  46. Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res 20:1003–1018. CrossRefPubMedGoogle Scholar
  47. Shinozaki Y, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340CrossRefGoogle Scholar
  48. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sun QH, Gao F, Zhao L, Li KP, Zhang JR (2010) Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol 10:90. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sun H, Huang X, Xu X, Lan H, Huang J, Zhang HS (2012) ENAC1, a NAC transcription factor, is an early and transient response regulator induced by abiotic stress in rice (Oryza sativa L.). Mol Biotechnol 52:101–110. CrossRefPubMedGoogle Scholar
  51. Swapna L, Khurana R, Vijaya Kumar S, Tyagi AK, Rao KV (2011) Pollen-specific expression of Oryza sativa Indica pollen allergen gene (OSIPA) promoter in rice and Arabidopsis transgenic systems. Mol Biotechnol 48:49–59. CrossRefPubMedGoogle Scholar
  52. Tameling WI, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MH (2010) RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22:4176–4194. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tao YB, He LL, Niu LJ, Xu ZF (2015) Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. Planta 241:823–836. CrossRefPubMedGoogle Scholar
  54. Tavakol E, Sardaro ML, Shariati JV, Rossini L, Porceddu E (2014) Promoter analysis and expression profile of in response to drought stress in wheat ancestors. Gene 549:24–32. CrossRefPubMedGoogle Scholar
  55. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86. CrossRefPubMedGoogle Scholar
  56. Wu H-M, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Xu X, Guo S, Chen K, Song H, Liu J, Guo L, Qian Q, Wang H (2010) A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett 32:1533–1539. CrossRefPubMedGoogle Scholar
  58. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. CrossRefPubMedGoogle Scholar
  59. Ye W, Chen X, Zhong Z, Chen M, Shi L, Zheng H, Lin Y, Zhang D, Lu G, Li G, Chen J, Wang Z (2014) Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 67:37–50. CrossRefPubMedGoogle Scholar
  60. Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Nati Acad Sci USA 109:14693–14698. CrossRefGoogle Scholar
  61. Zavallo D, Bilbao ML, Esteban Hopp H, Heinz R (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29:239–248. CrossRefPubMedGoogle Scholar
  62. Zermiani M, Zonin E, Nonis A, Begheldo M, Ceccato L, Vezzaro A, Baldan B, Trentin A, Masi A, Pegoraro M, Fadanelli L, Teale W, Palme K, Quintieri L, Ruperti B (2015) Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits. J Exp Bot 66(22):7255–7270. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang WW, Gao QR, Yang MM, Liu H, Wang D (2012) Assay and characterization of an osmolarity inducible promoter newly isolated from Bacillus subtilis. Mol Biol Rep 39:7347–7353. CrossRefPubMedGoogle Scholar
  64. Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528. CrossRefPubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  1. 1.College of Life ScienceHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations