Advertisement

Acta Physiologiae Plantarum

, 41:26 | Cite as

Green algal molecular responses to temperature stress

  • B. Barati
  • S.-Y. Gan
  • P.-E. LimEmail author
  • J. Beardall
  • S.-M. Phang
Review
  • 88 Downloads

Abstract

Global warming is a critical issue and has great impact on all living organisms, including algae. Generally, algae play significant roles in aquatic ecosystems and employ diverse strategies to survive under abiotic stress. For example, heat stress affects membrane fluidity, and algae, in response, can modify their membrane fatty acid composition to maintain homoeostasis. Moreover, they protect their proteins and enzymes using molecular chaperones or degrade denatured proteins in processes involving ubiquitin. In addition, algae regulate their carbohydrate concentrations and structures to utilise the energy of endogenous carbon sources efficiently and protect other molecules via accumulation of compatible solutes. Algae regulate the photosynthetic machinery to acclimatise to stress conditions. In fact, algae have a range of acclimation and repair strategies; and in the case where these strategies fail, programmed cell death (PCD) will be activated. Among algae, green algae have been massively studied due to their broad-range applications such as pharmaceutical, biofuel production and wastewater management, and being a suitable model to study plant and photosynthesis. Enhanced knowledge about the genes and proteins involved in the acclimation of green algae would enlighten our understanding of their acclimation pathways, and enable the genetic improvement of stress-tolerant strains. Thus, the mechanisms and pathways associated with green algal acclimation and repair strategies with an emphasis on temperature-related stress are highlighted in this review.

Keywords

Global warming Green algae Protein Gene expression 

Notes

Acknowledgements

The study was sponsored by the research Grants from the Ministry of Higher Education, Malaysia, HiCOE research Grant (IOES-2014H), University of Malaya Postgraduate Research Fund (PG146-2015A) and University of Malaya Research Grant (RP002C-13SUS).

References

  1. Ahmad I, Hellebust JA (1988) The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol 88(2):348–354PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad P, Jamsheed S, Hameed A, Rasool S, Sharma I, Azooz MM, Hasanuzzaman M (2014) Oxidative damage and antioxidants in plants. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, New York, pp 345–367CrossRefGoogle Scholar
  3. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13(4):540–550PubMedCrossRefGoogle Scholar
  4. Aksmann A, Pokora W, Bascik-Remisiewicz A, Dettlaff-Pokora A, Wielgomas B, Dziadziuszko M, Tukaj Z (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110:31–40PubMedCrossRefGoogle Scholar
  5. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32PubMedCrossRefGoogle Scholar
  6. Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341PubMedCrossRefGoogle Scholar
  8. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12:128–152PubMedPubMedCentralCrossRefGoogle Scholar
  9. Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Breed 3(2):44–55Google Scholar
  10. An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, Zhang W, Miao J (2013a) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83PubMedCrossRefGoogle Scholar
  11. An M, Mou S, Zhang X, Ye N, Zheng Z, Cao S, Xu D, Fan X, Wang Y, Miao J (2013b) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp ICE-L. Bioresour Technol 134:151–157PubMedCrossRefGoogle Scholar
  12. Andreou A, Feussner I (2009) Lipoxygenases-structure and reaction mechanism. Phytochemistry 70(13–14):1504–1510PubMedCrossRefGoogle Scholar
  13. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48(3–4):148–170PubMedCrossRefGoogle Scholar
  14. Andronis EA, Roubelakis-Angelakis KA (2010) Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta 231(2):437PubMedCrossRefGoogle Scholar
  15. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedPubMedCentralCrossRefGoogle Scholar
  16. Arbona V, Manzi M, de Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911PubMedPubMedCentralCrossRefGoogle Scholar
  17. Audergon PN, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL, Allshire RC (2015) Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348(6230):132–135PubMedPubMedCentralCrossRefGoogle Scholar
  18. Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPS-TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol Biol Evol 27:359–369PubMedCrossRefGoogle Scholar
  19. Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233PubMedCrossRefGoogle Scholar
  21. Barlow JH, Lisby M, Rothstein R (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30:73–85PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenerg 54:83–88CrossRefGoogle Scholar
  23. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43(1):26–40CrossRefGoogle Scholar
  24. Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655PubMedCrossRefGoogle Scholar
  25. Bidle KD, Haramaty L, Barcelos ERJ, Falkowski P (2007) Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci USA 104:6049–6054PubMedCrossRefGoogle Scholar
  26. Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci India 101(1):47–56Google Scholar
  27. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139(4):1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606CrossRefGoogle Scholar
  30. Boreham DR, Mitchel RE (1993) DNA repair in Chlamydomonas reinhardtii induced by heat shock and gamma radiation. Radiat Res 135(3):365–371PubMedCrossRefGoogle Scholar
  31. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga. Dunaliella Arch Mikrobiol 96(1):37–52PubMedGoogle Scholar
  32. Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaun JP, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135(3):1838–1848PubMedPubMedCentralCrossRefGoogle Scholar
  33. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168(3):511–528PubMedCrossRefGoogle Scholar
  35. Bremauntz MP, Torres-Bustillos LG, Cañizares-Villanueva R-O, Duran-Paramo E, Fernández-Linares L (2011) Trehalose and sucrose osmolytes accumulated by algae as potential raw material for bioethanol. Nat Resour 2:173–179Google Scholar
  36. Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biol 38(3):483–499CrossRefGoogle Scholar
  37. Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112CrossRefGoogle Scholar
  38. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366PubMedCrossRefGoogle Scholar
  39. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev 9(8):619–631CrossRefGoogle Scholar
  40. Calow P (1991) Physiological costs of combating chemical toxicants: ecological implications. Comp Biochem Physiol C 100(1–2):3–6PubMedCrossRefGoogle Scholar
  41. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chankova S, Mitrovska Z, Miteva D, Oleskina YP, Yurina NP (2013) Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene 516:184–189PubMedCrossRefGoogle Scholar
  43. Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39PubMedCrossRefGoogle Scholar
  44. Chen L, Mao F, Kirumba GC, Jiang C, Manefield M, He Y (2015) Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicol Environ Saf 122:126–135PubMedCrossRefGoogle Scholar
  45. Cheng L, Qiao DR, Lu XY, Xiong Y, Bai LH, Xu H, Yang Y, Cao Y (2007) Identification and expression of the gene product encoding a CPD photolyase from Dunaliella salina. J Photochem Photobiol B 87(2):137–143PubMedCrossRefGoogle Scholar
  46. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chong GL, Chu WL, Othman RY, Phang SM (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol 34(5):637–645CrossRefGoogle Scholar
  48. Clare DA, Rabinowitch HD, Fridovich I (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch Biochem Biophys 231(1):158–163PubMedCrossRefGoogle Scholar
  49. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148PubMedCrossRefGoogle Scholar
  50. Cosse A, Leblanc C, Potin P (2007) Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Adv Bot Res 46:221–266CrossRefGoogle Scholar
  51. Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85(11):1083–1099PubMedCrossRefGoogle Scholar
  52. Crowe JH (2007) Trehalose as a “chemical chaperone”. Molecular aspects of the stress response: Chaperones, membranes and networks. Springer, Berlin, pp 143–158Google Scholar
  53. Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203CrossRefGoogle Scholar
  54. Daniel RM, Dines M, Petach HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317(1):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  55. Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biol 10(6):732–745PubMedCrossRefGoogle Scholar
  56. Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol cell biol 21(24):8483–8489PubMedPubMedCentralCrossRefGoogle Scholar
  57. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. BBA-Bioenerg 1020(1):1–24CrossRefGoogle Scholar
  58. Deng Y, Wang X, Guo H, Duan D (2014a) A trehalose-6-phosphate synthase gene from Saccharina japonica (Laminariales, Phaeophyceae). Mol Biol Rep 41(1):529–536PubMedCrossRefGoogle Scholar
  59. Deng Y, Zhan Z, Tang X, Ding L, Duan D (2014b) Molecular cloning and expression analysis of RbcL cDNA from the bloom-forming green alga Chaetomorpha valida (Cladophorales, Chlorophyta). J Appl Phycol 26(4):1853–1861CrossRefGoogle Scholar
  60. Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox and Reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  61. Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T (2011) Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34(4):629–642PubMedCrossRefGoogle Scholar
  62. Dong MT, Zhang XW, Zhuang ZM, Zou J, Ye NH, Xu D, Mou SL, Liang CW, Wang WQ (2012) Characterization of the LhcSR gene under light and temperature stress in the green alga ulva linza. Plant Mol Biol Rep 30(1):10–16CrossRefGoogle Scholar
  63. Dudas A, Chovanec M (2004) DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167PubMedCrossRefGoogle Scholar
  64. Dykens JA, Shick JM (1984) Photobiology of the symbiotic sea-anemone, Anthopleura-Elegantissima—defenses against photodynamic effects, and seasonal photoacclimatization. Biol Bull 167(3):683–697PubMedCrossRefGoogle Scholar
  65. Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293PubMedCrossRefGoogle Scholar
  66. Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14(8):1801–1816PubMedPubMedCentralCrossRefGoogle Scholar
  67. Elsayed KNM, Kolesnikova TA, Noke A, Klock G (2017) Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech 7(1):41PubMedPubMedCentralCrossRefGoogle Scholar
  68. Eom HS, Park S, Lee C-G, Jin ES (2005) Gene expression profiling of an eukaryotic microalga, Haematococcus pluvialis. J Microbiol Biotech 15:1060–1066Google Scholar
  69. Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A (2015) Caspases in plants: metacaspase gene family in plant stress responses. Funct Integr Genom 15(6):639–649CrossRefGoogle Scholar
  70. Fakhry EM, El Maghraby DM (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot Stud 56(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedCrossRefGoogle Scholar
  73. Fischer BB, Eggen RIL, Trebst A, Krieger-Liszkay A (2006) The glutathione peroxidase homologous gene GPXH in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. Planta 223:583–590PubMedCrossRefGoogle Scholar
  74. Franklin DJ, Berges JA (2004) Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness. Proc Biol Sci 271(1553):2099–2107PubMedPubMedCentralCrossRefGoogle Scholar
  75. Franklin DJ, Brussaard CP, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14CrossRefGoogle Scholar
  76. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64(1):97–112PubMedCrossRefGoogle Scholar
  77. Fu J, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68(3):277–288PubMedCrossRefGoogle Scholar
  78. Fujii S, Yamamoto R, Miyamoto K, Ueda J (1997) Occurrence of jasmonic acid in Dunaliella (Dunaliellales, Chlorophyta). Phycol Res 45(4):223–226CrossRefGoogle Scholar
  79. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 6:214074Google Scholar
  80. Gan SY, Maggs CA (2017) Random mutagenesis and precise gene editing technologies: applications in algal crop improvement and functional genomics. European J Phycol 52(4):466–481CrossRefGoogle Scholar
  81. Garcia-Gomez C, Mata MT, Van Breusegem F, Segovia M (2016) Low-steady-state metabolism induced by elevated CO2 increases resilience to UV radiation in the unicellular green-algae Dunaliella tertiolecta. Enviro Exp Bot 132:163–174CrossRefGoogle Scholar
  82. García-Jiménez P, Robaina RR (2012) Effects of ethylene on tetrasporogenesis in Pterocladiella Capillacea (Rhodophyta) 1. J Phycol 48:710–715PubMedCrossRefGoogle Scholar
  83. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903PubMedCrossRefGoogle Scholar
  84. Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA research 21(1):69–84PubMedCrossRefGoogle Scholar
  85. Geider RJ, La Roche J (2002) Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. Eur J Phycol 37(1):1–7CrossRefGoogle Scholar
  86. Geitmann A, Franklin-Tong VE, Emons AC (2004) The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death Differ 11:812–822PubMedCrossRefGoogle Scholar
  87. Gerloff-Elias A, Barua D, Molich A, Spijkerman E (2006) Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 1 56(3):345–354CrossRefGoogle Scholar
  88. Giardi MT, Masojídek J, Godde D (1997) Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol Plant 101(3):635–642CrossRefGoogle Scholar
  89. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930PubMedCrossRefGoogle Scholar
  90. Gonzalez-Fernandez C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30(6):1655–1661PubMedCrossRefGoogle Scholar
  91. Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29(10):2498–2518PubMedPubMedCentralCrossRefGoogle Scholar
  92. Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10(2):190–198PubMedCrossRefGoogle Scholar
  93. Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11):377–384PubMedCrossRefGoogle Scholar
  94. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol 41:187–223CrossRefGoogle Scholar
  95. Hagemann M (2016) Coping with high and variable salinity: molecular aspects of compatible solute accumulation. In: Borowitzka M, Beardall J, Raven J (eds) The physiology of microalgae. Developments in applied phycology, vol 6. Springer, Cham, pp 359–372Google Scholar
  96. Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9(2):228–241PubMedCrossRefGoogle Scholar
  97. Hawkins AJS (1991) Protein turnover: a functional appraisal. Funct Ecol 5(2):222–233CrossRefGoogle Scholar
  98. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  99. Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy P, Udayakumar M (2007) Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226(3):655–670PubMedCrossRefGoogle Scholar
  100. Hercegova A, Sevcovicova A, Galova E (2008) UV light-induced DNA damage detection in the unicellular green alga Chlamydomonas reinhardtii. Biologia 63(6):958–961CrossRefGoogle Scholar
  101. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  102. Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327PubMedPubMedCentralCrossRefGoogle Scholar
  103. Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, Hatano S (1995) Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: identification of late embryogenesis abundant proteins. Plant Cell Physiol 36(8):1421–1430PubMedGoogle Scholar
  104. Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64(8):1656–1663PubMedCrossRefGoogle Scholar
  105. Hsu T, Sheu R, Lai Y (2000) Possible involvement of a 72-kDa polypeptide in nucleotide excision repair of Chlorella pyrenoidosa identified by affinity adsorption and repair synthesis assay. Plant Sci 156(1):95–102PubMedCrossRefGoogle Scholar
  106. Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89(19):9354–9358PubMedCrossRefGoogle Scholar
  107. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639PubMedCrossRefGoogle Scholar
  108. Huang YS, Pereira SL, Leonard AE (2004) Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie 86(11):793–798PubMedCrossRefGoogle Scholar
  109. Huang X, Huang B, Chen J, Liu X (2016) Cellular responses of the dinoflagellate Prorocentrum donghaiense Lu to phosphate limitation and chronological ageing. J Plankton Res 38(1):83–93CrossRefGoogle Scholar
  110. Ikaran Z, Suarez-Alvarez S, Urreta I, Castanon S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144CrossRefGoogle Scholar
  111. Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919CrossRefGoogle Scholar
  112. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375PubMedPubMedCentralCrossRefGoogle Scholar
  113. Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80(3):249–260PubMedCrossRefGoogle Scholar
  114. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524PubMedPubMedCentralCrossRefGoogle Scholar
  115. Jauzein C, Erdner DL (2013) Stress-related responses in Alexandrium tamarense cells exposed to environmental changes. J Eukaryot Microbiol 60(5):526–538PubMedCrossRefGoogle Scholar
  116. Jiang T, Zhai H, Wang FB, Zhou HN, Si ZZ, He SZ, Liu QC (2014) Cloning and characterization of a salt tolerance-associated gene encoding trehalose-6-phosphate synthase in sweetpotato. J Integr Agric 13:1651–1661CrossRefGoogle Scholar
  117. Jiang SY, Chi YH, Wang JZ, Zhou JX, Cheng YS, Zhang BL, Ma A, Vanitha J, Ramachandran S (2015) Sucrose metabolism gene families and their biological functions. Sci Rep 5:17583PubMedPubMedCentralCrossRefGoogle Scholar
  118. Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60(3):815–828PubMedPubMedCentralCrossRefGoogle Scholar
  119. Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nature Rev Genet 9:883–890PubMedCrossRefGoogle Scholar
  120. Judkins RR, Fulkerson W, Sanghvi MK (1993) The dilemma of fossil-fuel use and global climate change. Energy Fuels 7(1):14–22CrossRefGoogle Scholar
  121. Kaliszewski P, Zoladek T (2008) The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 55(4):649–662PubMedGoogle Scholar
  122. Kato J, Yamahara T, Tanaka K, Takio S, Satoh T (1997) Characterization of catalase from green algae Chlamydomonas reinhardtii. J Plant Physiol 151(3):262–268CrossRefGoogle Scholar
  123. Kebeish R, El-Ayouty Y, Hussein A (2014) Effect of salinity on biochemical traits and photosynthesis-related gene transcription in Chlorella vulgaris Egypt. J Bot 54(2):281–294Google Scholar
  124. Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93(1):91–100PubMedCrossRefGoogle Scholar
  125. Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562PubMedCrossRefGoogle Scholar
  126. Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O (2014) Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 6(10):273127–273140CrossRefGoogle Scholar
  127. Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34(9):2285–2306PubMedCrossRefGoogle Scholar
  128. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50PubMedCrossRefGoogle Scholar
  129. Kumar M, Kumari P, Gupta V, Anisha PA, Reddy CR, Jha B (2010) Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals 23(2):315–325PubMedCrossRefGoogle Scholar
  130. Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Enviro Exp Bot 72(2):194–201CrossRefGoogle Scholar
  131. Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138PubMedCrossRefGoogle Scholar
  132. Kumar M, Kumari P, Reddy C, Jha B (2014) Salinity and desiccation induced oxidative stress acclimation in seaweeds. Adv Bot Res 71:91–123CrossRefGoogle Scholar
  133. Kumar M, Kuzhiumparambil U, Pernice M, Jiang ZJ, Ralph PJ (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res Biomass Biofuels Bioprod 16:76–92Google Scholar
  134. Kwapisz M, Cholbinski P, Hopper AK, Rousset JP, Zoladek T (2005) Rsp5 ubiquitin ligase modulates translation accuracy in yeast Saccharomyces cerevisiae. RNA 11(11):1710–1718PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lander N, Chiurillo MA, Docampo R (2016) Genome Editing by CRISPR/Cas9: a game change in the genetic manipulation of protists. J Eukaryot Microbiol 63(5):679–690PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lee REC, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA 107(30):13348–13353PubMedCrossRefGoogle Scholar
  137. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51(6):343–365PubMedCrossRefGoogle Scholar
  139. Lenka SK, Carbonaro N, Park R, Miller SM, Thorpe I, Li Y (2016) Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnol Adv 34(5):1046–1063PubMedCrossRefGoogle Scholar
  140. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278PubMedCrossRefGoogle Scholar
  141. Li YJ, Fei XW, Deng XD (2012) Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenerg 42:199–211CrossRefGoogle Scholar
  142. Li LC, Hsu YT, Chang HL, Wu TM, Sung MS, Cho CL, Lee TM (2013) Polyamine effects on protein disulfide isomerase expression and implications for hypersalinity stress in the marine alga Ulva lactuca Linnaeus. J Phycol 49:1181–1191PubMedCrossRefGoogle Scholar
  143. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011PubMedPubMedCentralCrossRefGoogle Scholar
  144. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482(1–2):51–58PubMedCrossRefGoogle Scholar
  145. Liu J, Sun Z, Zhong Y, Huang J, Hu Q, Chen F (2012) Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236(6):1665–1676PubMedCrossRefGoogle Scholar
  146. Liu Z, Zhang L, Pu Y, Liu Z, Zhao Y, Qin S (2014) Cloning and expression of a cytosolic HSP90 gene in Chlorella vulgaris. BioMed Res Int 14:487050Google Scholar
  147. Liu C, Wang X, Wang X, Sun C (2016) Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 20(4):437–450PubMedCrossRefGoogle Scholar
  148. Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116(2–3):489–509PubMedCrossRefGoogle Scholar
  149. Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010a) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474PubMedCrossRefGoogle Scholar
  150. Lu Y, Chi X, Li Z, Yang Q, Li F, Liu S, Gan Q, Qin S (2010b) Isolation and characterization of a stress-dependent plastidial ∆12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7. Lipids 45(2):179–187PubMedCrossRefGoogle Scholar
  151. Lud D, Buma AG, Van De Poll W, Moerdijk TC, Huiskes AH (2001) DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola Crispa ssp. Antarctica (chlorophyta) under manipulated UV-B radiation. J Phycol 37(4):459–467CrossRefGoogle Scholar
  152. Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335CrossRefGoogle Scholar
  153. Lukes M, Prochazkova L, Shmidt V, Nedbalova L, Kaftan D (2014) Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol Ecol 89(2):303–315PubMedCrossRefPubMedCentralGoogle Scholar
  154. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Treholose metabolism in plants. Plant J 79(4):544–567PubMedCrossRefGoogle Scholar
  155. Luo QJ, Zhu ZJ, Yang R, Qian FJ, Yan XJ, Chen HM (2015) Characterization of a respiratory burst oxidase homologue from Pyropia haitanensis with unique molecular phylogeny and rapid stress response. J Appl Phycol 27(2):945–955CrossRefGoogle Scholar
  156. Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology (Basel) 3(1):56–80Google Scholar
  157. Machida T, Murase H, Kato E, Honjoh K, Matsumoto K, Miyamoto T, Iio M (2008) Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Sci 175(3):238–246CrossRefGoogle Scholar
  158. Maeda H, Sakuragi Y, Bryant DA, Dellapenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138(3):1422–1435PubMedPubMedCentralCrossRefGoogle Scholar
  159. Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA (2017) Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. Photosynth Res 133(1–3):215–223PubMedGoogle Scholar
  160. Malan C, Greyling MM, Gressel J (1990) Correlation between cu-zn superoxide-dismutase and glutathione-reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69(2):157–166CrossRefGoogle Scholar
  161. McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533):187–190PubMedCrossRefGoogle Scholar
  162. Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  163. Merchant SS, Kropat J, Liu BS, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotech 23(3):352–363PubMedCrossRefGoogle Scholar
  164. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Gen 16(4):237CrossRefGoogle Scholar
  165. Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226(6):1411–1421PubMedCrossRefGoogle Scholar
  166. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19PubMedCrossRefGoogle Scholar
  167. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498PubMedCrossRefGoogle Scholar
  168. Moharikar S, D’Souza JS, Kulkarni AB, Rao BJ (2006) Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (chlorophyceae) cells following UV irradiation: Detection and functional analyses1. J Phycol 42(2):423–433CrossRefGoogle Scholar
  169. Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks - using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13(2):126–131PubMedCrossRefGoogle Scholar
  170. Müller W, Wegmann K (1978) Sucrose biosynthesis in Dunaliella. Planta 141(2):159–163PubMedCrossRefGoogle Scholar
  171. Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817(1):247–257PubMedCrossRefGoogle Scholar
  172. Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115(3):875–879PubMedPubMedCentralCrossRefGoogle Scholar
  173. Murik O, Elboher A, Kaplan A (2014) Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytol 202(2):471–484PubMedCrossRefGoogle Scholar
  174. Nagao M, Uemura M (2012) Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants. Planta 235(4):851–861PubMedCrossRefGoogle Scholar
  175. Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885PubMedCrossRefGoogle Scholar
  176. Nagaria P, Robert C, Rassool FV (2013) DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochim Biophys Acta 1830(2):2345–2353PubMedCrossRefGoogle Scholar
  177. Nakamura Y, Miyachi S (1982) Effect of temperature on starch degradation in Chlorella vulgaris 11 h cells. Plant Cell Physiol 23(2):333–341Google Scholar
  178. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95PubMedPubMedCentralCrossRefGoogle Scholar
  179. Nama S, Madireddi SK, Devadasu ER, Subramanyam R (2015) High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. J Photochem Photobiol B 152(PtB):367–376PubMedCrossRefGoogle Scholar
  180. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101(33):12248–12253PubMedCrossRefGoogle Scholar
  181. Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98(21):8777–8796PubMedCrossRefGoogle Scholar
  182. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43(35):11321–11330PubMedCrossRefGoogle Scholar
  183. Nouri MZ, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int J Mol Sci 16(9):20392–20416PubMedPubMedCentralCrossRefGoogle Scholar
  184. Nuñez A, Savary BJ, Foglia TA, Piazza GJ (2000) Anaerobic lipoxygenase activity from Chlorella pyrenoidosa responsible for the cleavage of the 13-hydroperoxides of linoleic and linolenic acids. Eur J Lipid Sci Technol 102:181–188CrossRefGoogle Scholar
  185. Nuñez A, Savary BJ, Foglia TA, Piazza GJ (2002) Purification of lipoxygenase from Chlorella: production of 9- and 13-hydroperoxide derivatives of linoleic acid. Lipids 37(11):1027–1032PubMedCrossRefGoogle Scholar
  186. Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P (2001) Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. J Biol Chem 276(23):19989–19993PubMedCrossRefGoogle Scholar
  187. Oliveira MD, Monteiro M, Robbs P, Leite S (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aqu Int 7(4):261–275CrossRefGoogle Scholar
  188. Olsenz JL (2011) Stress ecology in fucus: abiotic, biotic and genetic interactions. Adv Mar Biol 59(57):37Google Scholar
  189. Park S, Polle JE, Melis A, Lee TK, Jin E (2006) Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. Mar Biotechnol (NY) 8(2):120–128CrossRefGoogle Scholar
  190. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27(1):437–496PubMedCrossRefGoogle Scholar
  191. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Env 54(3):89CrossRefGoogle Scholar
  192. Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK (ed.) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, Berlin, pp 239–257Google Scholar
  193. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostag Leukotr Ess 68(2):97–106CrossRefGoogle Scholar
  194. Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956PubMedCrossRefGoogle Scholar
  195. Petersen JL, Lang DW, Small GD (1999) Cloning and characterization of a class II DNA photolyase from Chlamydomonas. Plant Mol Biol 40(6):1063–1071PubMedCrossRefGoogle Scholar
  196. Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8(1):33–41PubMedCrossRefGoogle Scholar
  197. Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73(14):2781–2807PubMedPubMedCentralCrossRefGoogle Scholar
  198. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65PubMedCrossRefGoogle Scholar
  199. Plecenikova A, Mages W, Andresson OS, Hrossova D, Valuchova S, Vlcek D, Slaninova M (2013) Studies on recombination processes in two Chlamydomonas reinhardtii. endogenous genes, NIT1 and ARG7. Protist 164(4):570–582PubMedCrossRefGoogle Scholar
  200. Plecenikova A, Slaninova M, Riha K (2014) Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLoS One 9(8):e105482PubMedPubMedCentralCrossRefGoogle Scholar
  201. Podkowinski J, Tworak A (2011) Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology. BioTechnol 92(4):321–335CrossRefGoogle Scholar
  202. Poong SW, Lim PE, Phang SM, Wong CY, Pai TW, Chen CM, Yang CH, Liu CC (2018) Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress. J Appl Phycol 30(1):87–99CrossRefGoogle Scholar
  203. Potin P, Bouarab K, Salaun JP, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5(4):308–317PubMedCrossRefGoogle Scholar
  204. Qian H, Chen W, Sheng GD, Xu X, Liu W, Fu Z (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88(4):301–307PubMedCrossRefGoogle Scholar
  205. Qian H, Chen W, Li J, Wang J, Zhou Z, Liu W, Fu Z (2009a) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat Toxicol 92(4):250–257PubMedCrossRefGoogle Scholar
  206. Qian H, Chen W, Sun L, Jin Y, Liu W, Fu Z (2009b) Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology 18(5):537–543PubMedCrossRefGoogle Scholar
  207. Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99(3):405–412PubMedCrossRefGoogle Scholar
  208. Qian H, Pan X, Shi S, Yu S, Jiang H, Lin Z, Fu Z (2011) Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris. Environ Monit Assess 182(1–4):61–69PubMedCrossRefGoogle Scholar
  209. Qian H, Pan X, Chen J, Zhou D, Chen Z, Zhang L, Fu Z (2012) Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 21(3):847–859PubMedCrossRefGoogle Scholar
  210. Raman V, Ravi S (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33(3):1043–1049CrossRefGoogle Scholar
  211. Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Bio 12(2):153–164CrossRefGoogle Scholar
  212. Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann Bot-London 86(4):709–716CrossRefGoogle Scholar
  213. Rathore RS, Garg N, Garg S, Kumar A (2009) Starch phosphorylase: role in starch metabolism and biotechnological applications. Crit Rev Biotechnol 29(3):214–224PubMedCrossRefGoogle Scholar
  214. Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1–4):195–214CrossRefGoogle Scholar
  215. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44(1):357–384CrossRefGoogle Scholar
  216. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898PubMedCrossRefGoogle Scholar
  217. Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS (2007) The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 63(2):591–604PubMedCrossRefGoogle Scholar
  218. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188(3):281–289PubMedCrossRefGoogle Scholar
  219. Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12(1):148CrossRefGoogle Scholar
  220. Sabatini SE, Juarez AB, Eppis MR, Bianchi L, Luquet CM, Rios de Molina Mdel C (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72(4):1200–1206PubMedCrossRefGoogle Scholar
  221. Saheb E, Trzyna W, Bush J (2014) Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J Biosci 39(5):909–916PubMedCrossRefGoogle Scholar
  222. Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5(2):208–210PubMedCrossRefGoogle Scholar
  223. Sakuradani E, Kobayashi M, Shimizu S (1999) ∆9-Fatty acid desaturase from arachidonic acid-producing fungus. Eur J Biochem 260(1):208–216PubMedCrossRefGoogle Scholar
  224. Sancar GB (1990) DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat Res 236(2–3):147–160PubMedCrossRefGoogle Scholar
  225. Sayre R (2010) Microalgae: The potential for carbon capture. Bioscience 60(9):722–727CrossRefGoogle Scholar
  226. Scholz B, Liebezeit G (2012) Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. Eur J Phycol 47(4):393–407CrossRefGoogle Scholar
  227. Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11(6):1165–1178PubMedPubMedCentralCrossRefGoogle Scholar
  228. Schroda M, Hemme D, Muhlhaus T (2015) The Chlamydomonas heat stress response. Plant J 82(3):466–480PubMedCrossRefGoogle Scholar
  229. Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20(10):391–397PubMedCrossRefGoogle Scholar
  230. Segovia M, Haramaty L, Berges JA, Falkowski PG (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol 132(1):99–105PubMedPubMedCentralCrossRefGoogle Scholar
  231. Ševčovičová A, Hamzová A, Gálová E, Vlček D (2008) Use of algae in the study of essential cell processes. Biologia 63(6):952–957CrossRefGoogle Scholar
  232. Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotech Adv 30(6):1289–1300CrossRefGoogle Scholar
  233. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Biol 49(1):611–641CrossRefGoogle Scholar
  234. Shanklin J, Somerville C (1991) Stearoyl-Acyl-Carrier-protein desaturase from higher-plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88(6):2510–2514PubMedCrossRefGoogle Scholar
  235. Shapira M, Lers A, Heifetz PB, Irihimovitz V, Osmond CB, Gillham NW, Boynton JE (1997) Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein. Plant Mol Biol 33(6):1001PubMedCrossRefGoogle Scholar
  236. Shih MD, Hoekstra FA, Hsing YIC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255CrossRefGoogle Scholar
  237. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810PubMedPubMedCentralCrossRefGoogle Scholar
  238. Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41(4):297–308Google Scholar
  239. Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–6CrossRefGoogle Scholar
  240. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236PubMedCrossRefGoogle Scholar
  241. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847PubMedPubMedCentralCrossRefGoogle Scholar
  242. Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98PubMedCrossRefGoogle Scholar
  243. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106(6):1704–1709PubMedCrossRefGoogle Scholar
  244. Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475PubMedCrossRefGoogle Scholar
  245. Stauber EJ, Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Bioch 42(12):989–1001CrossRefGoogle Scholar
  246. Sulmon C, Van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C (2015) Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environ Pollut 202:66–77PubMedCrossRefGoogle Scholar
  247. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Sci 13(4):178–182CrossRefGoogle Scholar
  248. Tanaka S, Ikeda K, Miyasaka H, Shioi Y, Suzuki Y, Tamoi M, Takeda T, Shigeoka S, Harada K, Hirata K (2011) Comparison of three Chlamydomonas strains which show distinctive oxidative stress tolerance. J Biosci Bioeng 112(5):462–468PubMedCrossRefGoogle Scholar
  249. Teramoto H, Ono T, Minagawa J (2001) Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol 42(8):849–856PubMedCrossRefGoogle Scholar
  250. Thitisaksakul M, Jimenez RC, Arias MC, Beckles DM (2012) Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci 56(1):67–80CrossRefGoogle Scholar
  251. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302(1):17–45PubMedCrossRefGoogle Scholar
  252. Tsai DDW, Chen PH, Chou CMJ, Hsu CF, Ramaraj R (2015) Carbon sequestration by alga ecosystems. Ecol Eng 84:386–389CrossRefGoogle Scholar
  253. Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS (2013) Remodeling of membrane lipids in iron-starved Chlamydomonas. J Biol Chem 288:30246–30258PubMedPubMedCentralCrossRefGoogle Scholar
  254. Usman A, Brazard J, Martin MM, Plaza P, Heijde M, Zabulon G, Bowler C (2009) Spectroscopic characterization of a (6–4) photolyase from the green alga Ostreococcus tauri. J Photochem Photobiol B 96(1):38–48PubMedCrossRefGoogle Scholar
  255. Valledor L, Furuhashi T, Hanak AM, Weckwerth W (2013) Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol Cell Proteom 12(8):2032–2047CrossRefGoogle Scholar
  256. Vallentine P, Hung CY, Xie J, Van Hoewyk D (2014) The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate. AoB Plants 6:plu062PubMedPubMedCentralCrossRefGoogle Scholar
  257. Van Creveld SG, Rosenwasser S, Schatz D, Koren I, Vardi A (2015) Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J 9(2):385PubMedCrossRefGoogle Scholar
  258. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254PubMedCrossRefGoogle Scholar
  259. Vavilala SL, Sinha M, Gawde KK, Shirolikar SM, D’Souza JS (2016) KCl induces a caspase-independent programmed cell death in the unicellular green chlorophyte Chlamydomonas reinhardtii (Chlorophyceae). Phycol 55(4):378–392CrossRefGoogle Scholar
  260. Vayda ME, Yuan ML (1994) The Heat-Shock response of an Antarctic alga is evident at 5° C. Plant Mol Biol 24(1):229–233PubMedCrossRefGoogle Scholar
  261. Vega JM, Rubiales MA, Vilchez C, Vigara J (2005) Effect of abiotic stress on photosynthesis, respiration and antioxidant system in Chlamydomonas reinhardtii. Phyton 45(3):97–106Google Scholar
  262. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759PubMedCrossRefGoogle Scholar
  263. Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59(6):1409–1418PubMedCrossRefPubMedCentralGoogle Scholar
  264. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132PubMedCrossRefGoogle Scholar
  265. Vitova M, Bisova K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33(6):1204–1218PubMedCrossRefPubMedCentralGoogle Scholar
  266. Vlcek D, Sevcovicova A, Sviezena B, Galova E, Miadokova E (2008) Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Gen 53(1):1–22CrossRefGoogle Scholar
  267. Von Kampen J, Nieländer U, Wettern M (1995) Expression of ubiquitin genes in Chlamydomonas reinhardtii: involvement in stress response and cell cycle. Planta 197(3):528–534CrossRefGoogle Scholar
  268. Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91(10):4273–4277PubMedCrossRefGoogle Scholar
  269. Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481PubMedCrossRefGoogle Scholar
  270. Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128PubMedCrossRefGoogle Scholar
  271. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058PubMedPubMedCentralCrossRefGoogle Scholar
  272. Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47(3):325–338CrossRefGoogle Scholar
  273. Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Lett 39(1–2):37–43CrossRefGoogle Scholar
  274. Wendel AA, Lewin TM, Coleman RA (2008) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791(6):501–506PubMedPubMedCentralCrossRefGoogle Scholar
  275. Wettern M, Parag HA, Pollmann L, Ohad I, Kulka RG (1990) Ubiquitin in Chlamydomonas reinhardii. Distribution in the cell and effect of heat shock and photoinhibition on its conjugate pattern. Eur J Biochem 191(3):571–576PubMedCrossRefGoogle Scholar
  276. Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Levesque LM, Vincent WF (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35(7):359–369PubMedCrossRefGoogle Scholar
  277. Xu J, Zhang X, Ye N, Zheng Z, Mou S, Dong M, Xu D, Miao J (2013) Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C4 pathway in CO2 assimilation. Sci China Life Sci 56(6):571–580PubMedCrossRefGoogle Scholar
  278. Xu T, Li Y, Van Nostrand JD, He Z, Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80(5):1544–1552PubMedPubMedCentralCrossRefGoogle Scholar
  279. Xue WB, Liu F, Sun Z, Zhou ZG (2016) A delta-9 fatty acid desaturase gene in the microalga Myrmecia incisa reisigl: cloning and functional analysis. Int J Mol Sci 17(7):1143PubMedCentralCrossRefPubMedGoogle Scholar
  280. Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotech J 14(11):2158–2167CrossRefGoogle Scholar
  281. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222PubMedCrossRefGoogle Scholar
  282. Yanguez K, Lovazzano C, Contreras-Porcia L, Ehrenfeld N (2015) Response to oxidative stress induced by high light and carbon dioxide (CO2) in the biodiesel producer model Nannochloropsis salina (Ochrophyta, Eustigmatales). Rev Biol Mar Oceanog 50:163–175CrossRefGoogle Scholar
  283. Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26(4):352–360PubMedCrossRefGoogle Scholar
  284. Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2014) The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Ecotoxicol Environ Saf 110:21–30PubMedCrossRefGoogle Scholar
  285. Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42(12):1389–1397PubMedCrossRefGoogle Scholar
  286. Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724PubMedPubMedCentralCrossRefGoogle Scholar
  287. Young AJ (1991) The photoprotective role of carotenoids in higher-plants. Physiol Plant 83(4):702–708CrossRefGoogle Scholar
  288. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154(2):267–273PubMedPubMedCentralCrossRefGoogle Scholar
  289. Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49(3):411–419PubMedCrossRefGoogle Scholar
  290. Zhang N, Wang F, Meng X, Luo S, Li Q, Dong H, Xu Z, Song R (2011) Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis. Mol Biol Rep 38(4):2241–2248PubMedCrossRefGoogle Scholar
  291. Zhang H, Li W, Li J, Fu W, Yao J, Duan D (2012) Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae). Mar Genom 5:53–58CrossRefGoogle Scholar
  292. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014a) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298PubMedCrossRefGoogle Scholar
  293. Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014b) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174(7):2435–2445PubMedCrossRefGoogle Scholar
  294. Zimmerman D, Vick B (1973) Lipoxygenase in Chlorella pyrenoidosa. Lipids 8(5):264–266PubMedCrossRefGoogle Scholar
  295. Zuo Z, Zhu Y, Bai Y, Wang Y (2012) Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol Biochem 51:175–184PubMedCrossRefGoogle Scholar
  296. Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol 48(7):1000–1009PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • B. Barati
    • 1
    • 2
  • S.-Y. Gan
    • 3
  • P.-E. Lim
    • 1
    Email author
  • J. Beardall
    • 4
  • S.-M. Phang
    • 1
    • 5
  1. 1.Institute of Ocean and Earth Sciences C308, Institute of Postgraduate Studies BuildingUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  3. 3.School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  4. 4.School of Biological SciencesMonash UniversityClaytonAustralia
  5. 5.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations