Advertisement

Acta Physiologiae Plantarum

, 40:205 | Cite as

Effect of 1-MCP and low-temperature storage on postharvest conservation of camu–camu

  • Patrícia Maria Pinto
  • Poliana Cristina Spricigo
  • Simone Rodrigues da Silva
  • Steven Alonzo Sargent
  • Angelo Pedro JacominoEmail author
Original Article
  • 70 Downloads

Abstract

Camu–camu, a native fruit from the Amazon region, is a rich source of bioactive compounds. However, its intense metabolic activity and high-water content limit the fruit’s postharvest storage and marketing. The aim of this study, conducted in two parts, was to evaluate the effects of 1-MCP and storage temperature on the physiology and postharvest preservation of camu–camu fruit. In part 1 of the study, fruit harvested at maturity stage 3 were divided into groups: control, 1-methylcyclopropene (1-MCP; 900 nL L−1; 12 h) and ethylene (1000 µL L−1; 24 h) and were stored at 22 ± 1 °C and 85 ± 5% RH for 9 days. In part 2, fruit harvested at maturity stage 3 were stored at 5, 10, 15, 20, or 25 ± 1 °C and 85 ± 5% RH for 9 days. During storage, fruit were evaluated daily for decay, mass loss, respiratory activity, and ethylene production, and every 3 days they were evaluated for peel color, pulp firmness, soluble solids content, total titratable acidity, ascorbic acid, total chlorophyll, and total anthocyanins. Fruit treated with 1-MCP exhibited delayed ripening due to lower metabolic activity, as evidenced by delay to softening, reduced mass loss and no decay. Storage at 5 °C prevented ethylene production, mass loss, color changes, and maintained pulp firmness, while did not affect soluble solids content. The results indicated that storage of camu–camu fruit at 5 °C or at 25 °C following application of 900 nL L−1 1-MCP were effective strategies to delay ripening and maintain fruit quality up to 9 days.

Keywords

Myrciaria dubia 1-Methylcyclopropene Ripening Preservation 

Notes

Acknowledgements

The authors thank Estação Experimental de Citricultura de Bebedouro (EECB), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2009/13653-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—308531/2015-3).

References

  1. Akter MS, Oh S, Eun JB, Ahmed M (2011) Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: a review. Food Res Int 44:1728–1732CrossRefGoogle Scholar
  2. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055CrossRefGoogle Scholar
  3. Alves RE, Almeida H, Filgueiras C et al (2002) Camu-Camu (Myrciaria dubia Mc Vaugh): a rich natural source of vitamin C. Proc Interamer Soc Trop Hort Fruit 46:11–13Google Scholar
  4. Andrade JS, Galeazzi MAM, Aragão CG, Chávez Flores WB (1991) Valor nutricional do camu-camu (Myrciaria dubia (H.B.K.) McVaugh) cultivado em terra firme na Amazônia central. Rev Bras Frutic 13:307–311Google Scholar
  5. Andrade JS, Silveira JS, Ferreira SAN, Brasil JEB (2010) Effects of ripeing stage and environment conditions on stored postharvest camu-camu (Myrciaria dubia McVaugh) fruits. In: Acta horticulturae. International Society for Horticultural Science (ISHS), Leuven, pp 423–429Google Scholar
  6. Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25.  https://doi.org/10.1016/S0925-5214(02)00246-6 CrossRefGoogle Scholar
  7. Campos RP, Knoch B, Hiane PA et al (2011) 1-MCP em mangabas armazenadas em temperatura ambiente e a 11 °C. Rev Bras Frutic 2011:206–212Google Scholar
  8. Carrillo MP, Hernández MS, Cardona JEC et al (2011) Prolonging postharvest quality of camu-camu (Myrciaria dubia) as the first step in the commercial chain. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, pp 31–36Google Scholar
  9. Carvalho CRL, Mantovani DMB, Carvalho PRN, Moraes RMM (1990) Análises químicas de alimentos. Campinas, ItalGoogle Scholar
  10. Cerqueira TS, Jacomino AP, Sasaki FF, Amorim L (2009) Controle do amadurecimento de goiabas “Kumagai” tratadas com 1-metilciclopropeno. Rev Bras Frutic 31:687–692CrossRefGoogle Scholar
  11. Cheng Y, Liu L, Yuan C, Guan J (2016) Molecular characterization of ethylene-regulated anthocyanin biosynthesis in plums during fruit ripening. Plant Mol Biol Rep 34:777–785.  https://doi.org/10.1007/s11105-015-0963-x CrossRefGoogle Scholar
  12. Chitarra AB, Chitarra MIF (2005) Pós-colheita de frutas e hortaliças: fisiologia e manuseio. UFLA, LavrasGoogle Scholar
  13. Doll Hojo ET, de Abreu CMP, Asmar SA et al (2009) Avaliação da qualidade de manga “Palmer” tratada com 1-metilciclopropeno e armazenada sob refrigeração e condição ambiente. Rev Bras Frutic 31:28–38.  https://doi.org/10.1590/S0100-29452009000100006 CrossRefGoogle Scholar
  14. Dong L, Lurie S, Zhou H-W (2002) Effect of 1-methylcyclopropene on ripening of “Canino” apricots and “Royal Zee” plums. Postharvest Biol Technol 24:135–145.  https://doi.org/10.1016/S0925-5214(01)00130-2 CrossRefGoogle Scholar
  15. Fan X, Blankenship SM, Mattheis JP (1999) 1-Methylcyclopropene inhibits apple ripening. J Am Soc Hortic Sci 124:690–695Google Scholar
  16. Fioravanço JC, Paiva MC, Bizzani E (2007) Ethephon na antecipação da colheita e qualidade da ameixa cv. Reubennel. Sci Agrar 8:193–197Google Scholar
  17. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278.  https://doi.org/10.5555/jaoi.2005.88.5.1269 CrossRefGoogle Scholar
  18. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382.  https://doi.org/10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  19. Liu M, Song CZ, Chi M et al (2016) The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regul 79:377–390.  https://doi.org/10.1007/s10725-015-0141-z CrossRefGoogle Scholar
  20. Maeda RN, Andrade JS (2003) Aproveitamento do camu-camu (Myrciaria dubia) para produção de bebida alcoólica fermentada. Acta Amaz 33:489–498.  https://doi.org/10.1590/S0044-59672003000300014 CrossRefGoogle Scholar
  21. Manganaris GA, Vicente AR, Crisosto CH, Labavitch JM (2008) Effect of delayed storage and continuous ethylene exposure on flesh reddening of “Royal Diamond” plums. J Sci Food Agric 88:2180–2185.  https://doi.org/10.1002/jsfa.3330 CrossRefGoogle Scholar
  22. Morais PLD de, Lima LC, de O, Miranda MRA de et al (2008) Enzyme activities and pectin breakdown of sapodilla submitted to 1-methylcyclopropene. Pesqui. Agropecuária Bras 43:15–20CrossRefGoogle Scholar
  23. Myoda T, Fujimura S, Park B et al (2010) Antioxidative and antimicrobial potential of residues of camu-camu juice production. J Food Agric Environ 8:304–307Google Scholar
  24. Nath P, Bouzayen M, Mattoo AK et al (2014) Fruit ripening: physiology, signalling and genomics. CAB International, Oxfordshire.  https://doi.org/10.1079/9781845939625.0000 CrossRefGoogle Scholar
  25. Oliveira J de, Silva IG, Silva PPM da, Spoto MHF (2014) Atmosfera modificada e refrigeração para conservação pós-colheita de camu-camu. Ciência Rural 44:1126–1133CrossRefGoogle Scholar
  26. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229.  https://doi.org/10.1016/J.PLANTSCI.2011.05.009 CrossRefPubMedGoogle Scholar
  27. Pinto PM, Jacomino AP, Silva SR, Wippich CA (2013) Ponto de colheita e maturação de frutos de camu-camu colhidos em diferentes estádios. Pesq Agropec Bras 48:605–612.  https://doi.org/10.1590/S0100-204X2013000600005 CrossRefGoogle Scholar
  28. Ribeiro SI, Mota MGC, Corrêa MLP (2002) Recomendações para o cultivo do camucamuzeiro no estado do Pará. EMBRAPA, Belém, p 9Google Scholar
  29. Rufino M, Alves SM, de Brito RE et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002.  https://doi.org/10.1016/j.foodchem.2010.01.037 CrossRefGoogle Scholar
  30. Severo J, Lima CSM, Coelho MT et al (2010) Atividade antioxidante e fitoquímicos em frutos de Physalis (Physalis peruviana, L.) durante o amadurecimento e o armazenamento. Rev Bras Agrociências 16:77–82Google Scholar
  31. Wang B, Wang J, Feng X et al (2009) Effects of 1-MCP and exogenous ethylene on fruit ripening and antioxidants in stored mango. Plant Growth Regul 57:185–192.  https://doi.org/10.1007/s10725-008-9335-y CrossRefGoogle Scholar
  32. Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409.  https://doi.org/10.1016/j.biotechadv.2006.01.005 CrossRefPubMedGoogle Scholar
  33. Whale SK, Singh Z (2007) Endogenous ethylene and color development in the skin of “pink lady” apple. J Amer Soc Hort Sci 132:20–28Google Scholar
  34. Yuyama K (2011) A cultura de camu-camu no Brasil. Rev Bras Frutic 33:335–690CrossRefGoogle Scholar
  35. Zambolim L, Costa H, Ventura JA, Vale FXR (2002) Controle de doenças em pós-colheita de frutas tropicais. In: Zambolim L (org) Manejo integrado: fruteiras tropicais—doenças e pragas, 1° edn. Universidade Federal de Viçosa, Viçosa, pp 443–512Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Patrícia Maria Pinto
    • 1
  • Poliana Cristina Spricigo
    • 1
  • Simone Rodrigues da Silva
    • 1
  • Steven Alonzo Sargent
    • 2
  • Angelo Pedro Jacomino
    • 1
    Email author
  1. 1.University of São Paulo, Escola Superior de Agricultura ‘Luiz de Queiroz’PiracicabaBrazil
  2. 2.University of FloridaGainesvilleUSA

Personalised recommendations