Advertisement

Acta Physiologiae Plantarum

, 40:177 | Cite as

Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont

  • Barták Miloš
  • Hájek Josef
  • Morkusová Jana
  • Skácelová Kateřina
  • Košuthová Alica
Original Article

Abstract

In this study, we investigated responses of the Photochemical Reflectance Index (PRI), and Normalized Difference Vegetation Index (NDVI) to gradual dehydration of several Antarctic lichen species (chlorolichens: Xanthoria elegans, Rhizoplaca melanophthalma, Physconia muscigena, cyanolichen: Leptogium puberulum), and a Nostoc commune colony from fully wet to a dry state. The gradual loss of physiological activity during dehydration was evaluated by chlorophyll fluorescence parameters. The experimental lichen species differed in thallus color, and intrathalline photobiont. In the species that did not exhibit color change with desiccation (X. elegans), NDVI and PRI were more or less constant (mean of 0.25, − 0.36, respectively) throughout a wide range of thallus hydration status showing a linear relation to relative water content (RWC). In contrast, the species with apparent species-specific color change during dehydration exhibited a curvilinear relation of NDVI and PRI to RWC. PRI decreased (R. melanophthalma, L. puberulum), increased (N. commune) or showed a polyphasic response (P. muscigena) with desiccation. Except for X. elegans, a curvilinear relation was found between the NDVI response to RWC in all species indicating the potential of combined ground research and remote sensing spectral data analyses in polar regions dominated by lichen flora. The chlorophyll fluorescence data recorded during dehydration (RWC decreased from 100 to 0%) revealed a polyphasic species-specific response of variable fluorescence measured at steady state—Fs, effective quantum yield of photosystem II (ΦPSII), and non-photochemical quenching (qN). Full hydration caused an inhibition of ΦPSII in N. commune while other species remained unaffected. The dehydration-dependent fall in ΦPSII was species-specific, starting at an RWC range of 22–32%. Critical RWC for ΦPSII was around 5–10%. Desiccation led to a species-specific polyphasic decrease in Fs and an increase in qN indicating the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts and N. commune cells. In this study, the spectral reflectance and chlorophyll fluorescence data are discussed in relation to the potential of ecophysiological processes in Antarctic lichens, their resistance to desiccation and survival in Antarctic vegetation oases.

Keywords

Spectral indices PRI NDVI Non-photochemical quenching James Ross Island 

Notes

Acknowledgements

The authors thank the projects CzechPolar-I, II (LM2010009 and LM2015078) for providing field facilities in Antarctica and the infrastructure for the research reported in this study. The authors thank also for the support from ECOPOLARIS project (CZ.02.1.01/0.0/0.0/16_013/0001708).

References

  1. Arima H, Horiguchi N, Takaichi S, Kofuji R, Ishida K-I, Wada K, Sakamoto T (2012) Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol Ecol 79:34–45CrossRefPubMedGoogle Scholar
  2. Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balzarolo M, Vescovo L, Hammerle A, Gianelle D, Papale D, Tomelleri E, Wohlfahrt G (2015) On the relationship between ecosystem-scale hyperspectral reflectance and CO2 exchange in European mountain grasslands. Biogeosciences 12:3089–3108CrossRefGoogle Scholar
  4. Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100CrossRefGoogle Scholar
  5. Barták M (2014) Lichen photosynthesis. Scaling from the cellular to the organism level. In: Hohmann-Marriot MF (ed) The structural basis of biological energy generation. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 379–400CrossRefGoogle Scholar
  6. Barták M, Váczi P (2014) Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season. Czech Polar Rep 4:63–72CrossRefGoogle Scholar
  7. Barták M, Hájek J, Vráblíková H, Dubová J (2004) High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol 6:333–341CrossRefPubMedGoogle Scholar
  8. Barták M, Váczi P, Hájek J, Smykla J (2007) Low temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biol 31:47–51CrossRefGoogle Scholar
  9. Barták M, Trnková K, Hansen ES, Hazdrová J, Skácelová K, Hájek J, Forbelská M (2015a) Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biol Plant 59:357–365CrossRefGoogle Scholar
  10. Barták M, Hazdrová J, Jáchymová G, Pláteníková E, Monteiro Estevao DM, Hájek J, Skácelová K, Váczi P, Balarinová K (2015b) Photosynthetic parameters and synthesis of UV-B absorbing compounds is species-specific in Antarctic lichens exposed to supplemental UV-B radiation. In: 14. ČSEBR conference, Brno, Czech Republic, 2015. Bulletin ČSEBR, p 69. ISSN 1213-6670Google Scholar
  11. Barták M, Hazdrová J, Skácelová K, Hájek J (2016) Dehydration-induced responses of primary photosynthetic processes and spectral reflectance indices in Antarctic Nostoc sp. Czech Polar Rep 6:87–95CrossRefGoogle Scholar
  12. Bechtel R, Rivard R, Sanchez-Azofeifa A (2002) Spectral properties of foliose and crustose lichens based on laboratory experiments. Remote Sens Environ 82:389–396CrossRefGoogle Scholar
  13. Block W, Lewis Smith RI, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ekosystem. Biol Rev 84:449–484CrossRefPubMedGoogle Scholar
  14. Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335CrossRefGoogle Scholar
  15. Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogam Bot 4:262–269Google Scholar
  16. Calviño-Cancela M, Martín-Herrero J (2016) Spectral discrimination of vegetation classes in ice-free areas of Antarctica. Remote Sens 8:856CrossRefGoogle Scholar
  17. Cansaran D, Cetin D, Halici MG, Atakol O (2006) Determination of usnic acid in some Rhizoplaca species from Middle Anatolia and their antimicrobial activities. Z Naturforsch C 61:47–51CrossRefPubMedGoogle Scholar
  18. Casanovas P, Black M, Fretwell P, Convey P (2015) Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res 34:25633CrossRefGoogle Scholar
  19. Chen J-C, Chen C-T (2008) Correlation analysis between indices of tree leaf spectral reflectance and chlorophyll content. In: Proceedings. The international archives of the photogrammetry, remote sensing and spatial information sciences. Part B7. Beijing, vol XXXVII, pp 231–238Google Scholar
  20. Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE III (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239CrossRefGoogle Scholar
  21. Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338CrossRefGoogle Scholar
  22. Fabião M, Ferreira MI, Conceição N, Silvestre J (2012) Transpiration and water stress effects on water use, in relation to estimations from NDVI: application in a vineyard in SE Portugal. In: Erena M, López-Francos A, Montesinos S, Berthoumieu J-P (eds) The use of remote sensing and geographic information systems for irrigation management in southwest Europe, Zaragoza, pp 203–208Google Scholar
  23. Feng J, Rivard B, Rogge D, Sánchez-Azofeifa A (2013) The longwave infrared (3–14 µm) spectral properties of rock encrusting lichens based on laboratory spectra and airborne SEBASS imagery. Remote Sens Environ 131:173–181CrossRefGoogle Scholar
  24. Fernández-Marín B, Becerril JM, García-Plazaolaeri JI (2010) Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta 231:1335–1342CrossRefPubMedGoogle Scholar
  25. Fréchette E, Wong CYS, Junker LV, Chang Ch-Y, Ensminger I (2015) Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the Photochemical Reflectance Index (PRI) and photosynthesis in an evergreen conifer during spring. J Exp Bot 66:7309–7323CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fretwell PT, Convey P, Fleming AH, Peat HJ, Hughes KA (2011) Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol 34:273–281CrossRefGoogle Scholar
  27. Gamon JA, Berry JA (2013) Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Isr J Plant Sci 60:85–95CrossRefGoogle Scholar
  28. Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117CrossRefGoogle Scholar
  29. Gamon JA, Field CB, Bilger W, Björkman O, Fredeen A, Peñuelas J (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7CrossRefPubMedGoogle Scholar
  30. Garbulsky MF, Penuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. Remote Sens Environ 115:281–297CrossRefGoogle Scholar
  31. Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A, Orlovsky L (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiol Plant 109:410–418CrossRefGoogle Scholar
  32. Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20CrossRefGoogle Scholar
  33. Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 27:75–82CrossRefGoogle Scholar
  34. Gauslaa Y, Solhaug K-A (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471CrossRefPubMedGoogle Scholar
  35. Gauslaa Y, Ustvedt EM (2003) Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci 2:424–432CrossRefGoogle Scholar
  36. Gloser J, Gloser V (2007) Changes in spectral reflectance of a foliar lichen Umbilicaria hirsuta during desiccation. Biol Plant 51:395–398CrossRefGoogle Scholar
  37. Guo JM, Trotter CM (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct Plant Biol 31:255–265CrossRefGoogle Scholar
  38. Gupta RK (2011) Freeze recovery and nitrogenase activity in Antarctic cyanobacterium Nostoc commune. In: International conference on nanotechnology and biosensors IPCBEE, vol 25. IACSIT Press, Singapore, pp 116–124Google Scholar
  39. Haboudane D, John R, Millera JR, Tremblay N, ZarcoTejada PJ, Dextraze L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ 81:416–426CrossRefGoogle Scholar
  40. Haranczyk H, Bacior M, Jastrzebska P, Olech MA (2006) Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Phys Pol A 115:516–520CrossRefGoogle Scholar
  41. Harsanyi JC, Chang Ch-I (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32:779–785CrossRefGoogle Scholar
  42. Haselwimmer C, Fretwell P (2009) Field reflectance spectroscopy of sparse vegetation cover on the Antarctic peninsula. In: First workshop on hyperspectral image and signal processing: evolution in remote sensing. Grenoble, France.  https://doi.org/10.1109/WHISPERS.2009.5289099
  43. Hauck M, Willenbruch K, Leuschner Ch (2009) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35(1):71–73CrossRefPubMedGoogle Scholar
  44. Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228:641–650CrossRefPubMedGoogle Scholar
  45. Heber U (2012) Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin. Photosynth Res 113:5–13CrossRefPubMedGoogle Scholar
  46. Heber U, Bilger W, Türk R, Lange OL (2010) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. New Phytol 185:459–470CrossRefPubMedGoogle Scholar
  47. Honegger R (1990) Mycobiont–photobiont interactions in adult thalli and in axenically resynthesized pre-thallus stages of Xanthoria parietina (Teloschistales, lichenized Ascomycetes). Bibl Lichenol 38:191–208Google Scholar
  48. Huang Y-T, Onose Y-I, Abe N, Yoshikawa K (2009) In vitro inhibitory effects of pulvinic acid derivates isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity. Biosci Biotechnol Biochem 73:855–860CrossRefPubMedGoogle Scholar
  49. Huneck S, Yoshimura I (1996) Idetification of lichen substances. Springer, BerlinCrossRefGoogle Scholar
  50. Jiang Y, Carrow RN, Duncan RR (2005) Physiological acclimation of seashore paspalum and bermudagrass to low light. Sci Hort 105:101–115CrossRefGoogle Scholar
  51. Jupa R, Hájek J, Hazdrová J, Barták M (2012) Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Rep 2:31–41CrossRefGoogle Scholar
  52. Kiang NY, Siefert J, Govindjee, Blankenship RE (2007) Spectral signatures of photosynthesis. I. Rev Earth Org Astrobiol 7:222–251CrossRefGoogle Scholar
  53. Komárek J, Genuario DB, Fiore MF, Elster J (2015) Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biol 38:475–492CrossRefGoogle Scholar
  54. Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S (2010) Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biochim Biophys Acta 1797:331–338CrossRefPubMedGoogle Scholar
  55. Kosugi M, Maiko Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888CrossRefPubMedGoogle Scholar
  56. Kranner I, Zorn M, Turk B, Wornik S, Beckett RP, Batič F (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol 160:167–176CrossRefGoogle Scholar
  57. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. PNAS 102:3141–3146CrossRefPubMedGoogle Scholar
  58. Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Arora R, Srivastava RB (2014) Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PLoS One 9:e98696.  https://doi.org/10.1371/journal.pone.0098696 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kutser T, Metsamaa L, Strombeck N, Vahtmae E (2006) Monitoring cyanobacterial blooms by satellite remote sensing. Estuar Coast Shelf Sci 67:303–312CrossRefGoogle Scholar
  60. Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue- green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313CrossRefGoogle Scholar
  61. Láska K, Barták M, Hájek J, Prošek P, Bohuslavová O (2011) Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Rep 1:49–62CrossRefGoogle Scholar
  62. Letts MG, Phelan CA, Johnson DRE, Rodd SB (2008) Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cotton woods in a riparian woodland. Tree Physiol 28:1037–1048CrossRefPubMedGoogle Scholar
  63. Meroni M, Picchi V, Rossini M, Cogliati S, Panigada C, Nali C, Lorenzini G, Colombo R (2008) Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index. Int J Remote Sens 29:5409–5422CrossRefGoogle Scholar
  64. Monteiro Estêvāo DM (2015) Production of UV-B screens and changes in photosynthetic efficiency in Antarctic Nostoc commune colonies and a lichen Xanthoria elegans depend on a dose and duration of UV-B stress. Czech Polar Rep 5:55–68CrossRefGoogle Scholar
  65. Morison M, Cloutis E, Mann P (2014) Spectral unmixing of multiple lichen species and underlying substrate. Int J Remote Sens 35:478–492CrossRefGoogle Scholar
  66. Munzi S, Branquinho Ch, Cruz C, Loppi S (2012) Nitrogen tolerance in the lichen Xanthoria parietina: the sensitive side of a resistant species. Funct Plant Biol 40:237–243CrossRefGoogle Scholar
  67. Nakaji T, Kosugi Y, Takanashi S, Niiyama K, Noguchi S, Tani M, Oguma H, Nik AR, Kassim AR (2014) Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia. Remote Sens Environ 150:82–92CrossRefGoogle Scholar
  68. Naumann JC, Anderson JE, Young DR (2008) Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sens Environ 112:3865–3875CrossRefGoogle Scholar
  69. Nayaka S, Saxena P (2014) Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian J Fundam Appl Life Sci 4:167–179Google Scholar
  70. Nelson PR, Roland C, Macander MJ, McCune B (2013) Detecting continuous lichen abundance for mapping winter caribou forage at landscape spatial scales. Remote Sens Environ 137:43–54CrossRefGoogle Scholar
  71. Novis PM, Whitehead D, Gregorich ED, Hunt JE, Sparrow AD, Hopkins DW, Elberling BO, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13:1224–1237CrossRefGoogle Scholar
  72. Orekhova A, Marečková M, Hazdrová J, Barták M (2018) The effect of upper cortex on spectral reflectance indices in Antarctic lichens during thallus dehydration. Czech Polar Rep 8(1) (accepted, in press) Google Scholar
  73. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Series: studies in polar research. Cambridge University Press, CambridgeGoogle Scholar
  74. Palumbo AD, Campi P, Modugno F, Mastrorilli M (2008) Crop water status estimated by remote sensing in formation. In: Santini A, Lamaddalena N, Severino G, Palladino M (eds) Irrigation in Mediterranean agriculture: challenges and innovation for the next decades. CIHEAM, Bari, pp 69–75, (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 84) Google Scholar
  75. Penuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221–230Google Scholar
  76. Perez-Priego O, Guan J, Rossini M, Fava F, Wutzler T, Moreno G, Carvalhais N, Carrara A, Kolle O, Julitta T, Schrumpf M, Reichstein M, Migliavacca M (2015) Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem. Biogeosciences 12:6351–6367CrossRefGoogle Scholar
  77. Piovano M, Guzmán G, Garbarino JA, Chamy MC (1997) Rhizoplaca melanophthalma a new chemical race. Biochem Syst Ecol 25:359–360CrossRefGoogle Scholar
  78. Rees WG, Tutubalina OV, Golubeva EI (2004) Reflectance spectra of subarctic lichens between 400 and 2400 nm. Remote Sens Environ 90:281–292CrossRefGoogle Scholar
  79. Ripullone F, Rivelli AR, Baraldi R, Guarini R, Guerrieri R, Magnani F, Peñuelas J, Raddi S, Borghetti M (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct Plant Biol 38:177–186CrossRefGoogle Scholar
  80. Rodriguez-Caballero E, Knerr T, Büdel B, Hill J, Weber B (2016) Cryptogamic covers control spectral vegetation indices and their seasonal variation in dryland systems. Geophys Res Abstr 18:13347 (EGU2016-9712) Google Scholar
  81. Sand-Jensen K (2014) Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Ann Bot 114:17–33CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sand-Jensen K, Jespersen TS (2012) Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (− 269 to 105 °C), pH and salt stress. Oecologia 169:331–339CrossRefPubMedGoogle Scholar
  83. Schlensog M, Schroeter B, Sancho LG, Pintado A, Kappen L (1997) Effects of strong irradiance to the photosynthetic performance of the melt water dependent cyanobacterial lichen Leptogium puberulum (Collemaceae) Hue from the maritime. Antarct Bibl Lichenol 67:235–247Google Scholar
  84. Shukia SP, Singh JS, Kashyap S, Giri DD, Kashyap AK (2008) Antarctic cyanobacteria as a source of phycocyanine. Indian J Mar Sci 37:446–449Google Scholar
  85. Singh R, Ranjan S, Nayaka S, Pathre UV, Shirke PA (2013) Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl. in response to light and water stress. Acta Physiol Plant 35:1605–1615CrossRefGoogle Scholar
  86. Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching In Parmelia Lichen. J Phys Chem B 117:11326–11336CrossRefPubMedGoogle Scholar
  87. Smith RCG, Adams J, Stephens DJ, Hick PT (1995) Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust J Agric Res 46:113–125CrossRefGoogle Scholar
  88. Stagakis S, Markos N, Sykioti O, Kyparissis A (2014) Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery. ISPRS J Photogramm Remote Sens 97:138–151CrossRefGoogle Scholar
  89. Sun P, Wahbi S, Tsonev T, Haworth M, Liu S, Centritto M (2014) On the use of leaf spectral indices to Assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS One 9:e105165CrossRefPubMedPubMedCentralGoogle Scholar
  90. Takaichi S, Maoka T, Mochimaru M (2009) Unique carotenoids in the terrestrial cyanobacterium Nostoc commune NIES-24: 2-hydroxymyxol 2′-fucoside, nostoxanthin and canthaxanthin. Curr Microbiol 59:413–419CrossRefPubMedGoogle Scholar
  91. Trnková K, Barták M (2017) Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from Antarctica. Phycol Res 65:44–50CrossRefGoogle Scholar
  92. Trotter GM, Whitehead D, Pinkney EJ (2002) The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents. Int J Remote Sens 23:1207–1212CrossRefGoogle Scholar
  93. Tubuxin B, Rahimzadeh-Bajgiran P, Ginnan Y, Hosoi F, Omasa K (2015) Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves. J Exp Bot 66:5595–5603CrossRefPubMedPubMedCentralGoogle Scholar
  94. Van Der Veen CJ, Csatho BM (2005) Spectral characteristics of Greenland lichens. Géogr Phys Quat 59:63–73Google Scholar
  95. Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: The origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wieners PC, Mudimu O, Bilger W (2012) Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynth Res 113:239–247CrossRefPubMedGoogle Scholar
  97. Wong CYS, Gamon JA (2015) Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol 206:187–195CrossRefPubMedGoogle Scholar
  98. Yamano H, Chen J, Zhang Y, Tamura M (2006) Relating photosynthesis of biological soil crusts with reflectance: preliminary assessment based on a hydration experiment. Int J Remote Sens 27:5393–5399CrossRefGoogle Scholar
  99. Yamawaka H, Itoh S (2013) Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry 52:4451–4459CrossRefGoogle Scholar
  100. Yebra M, Dijk AV, Leuning R, Huete A, Guerschman JP (2013) Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sens Environ 129:250–261CrossRefGoogle Scholar
  101. Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci  https://doi.org/10.3389/fpls.2016.00295 (article 295) CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhang J, Rivard B, Sánchez-Azofeifa A (2005) Spectral unmixing of normalized reflectance data for the deconvolution of lichen and rock mixtures. Remote Sens Environ 95:57–66CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Barták Miloš
    • 1
  • Hájek Josef
    • 1
  • Morkusová Jana
    • 1
  • Skácelová Kateřina
    • 1
  • Košuthová Alica
    • 2
  1. 1.Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations