Advertisement

A comparative cytogenetic study of 17 Avena species using Am1 and (GAA)6 oligonucleotide FISH probes

  • Xiaomei Luo
  • Nick A. Tinker
  • Yonghong Zhou
  • Juncheng Liu
  • Wenlin Wan
  • Liang Chen
Original Article

Abstract

Fluorescence in situ hybridization (FISH) was performed to explore the genomic and species relationships among 17 taxa using Am1 (oligo-Am1) and (GAA)6 oligonucleotide probes. Oligo-Am1 (51 bp) hybridized strongly over almost the entire length of all chromosomes in the C genome. Six translocations between the A and C genomes were found in AACC tetraploids and AACCDD hexaploids, four minor translocations between the C and D genomes were found in AACCDD hexaploids, and two large translocations between the C and D genomes were found in A. sativa. In the 17 Avena species, (GAA)6 regions mainly appear as sharp, thin bands at pericentromeric positions in the A, B, and C genomes and at termini in the B genome. However, no (GAA)6 signal loci were observed in the D genome. The (GAA)6 signal number was constant in both AA and CC diploids, though with different signal intensities. The (GAA)6 signal pattern was diverse in AABB, AACC, and AACCDD polyploids, with each species exhibiting one signal pattern. The (GAA)6 signal number was consistent in diploids and varied in polyploids, describing an intragenomic relationship among Avena species. This study is the first to test these two oligonucleotides, which are based on synthesized repeat units (18–51 bp), in the genus Avena. Our approach paves the way for future studies in which FISH probes can be used to assign other landmark genomic sequence oligonucleotides to physical chromosomes.

Keywords

FISH GAA Oligonucleotides Pericentromeric band 

Notes

Acknowledgements

This study was supported by the Natural Science Foundation of China (31500993). The authors greatly appreciate the American National Plant Germplasm System (Pullman, WA, USA) and Plant Gene Resources of Canada (Saskatoon, SK, Canada) for providing material for this investigation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Achleitner A, Tinker NA, Zechner E, Buerstmayr H (2008) Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet 117(7):1041–1053.  https://doi.org/10.1007/s00122-008-0843-y CrossRefPubMedGoogle Scholar
  2. Badaeva ED, Shelukhina OY, Diederichsen A, Loskutov IG, Pukhalskiy VA (2010a) Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species. Genome 53(2):125–137.  https://doi.org/10.1139/g09-089 CrossRefPubMedGoogle Scholar
  3. Badaeva ED, Shelukhina OY, Goryunova SV, Loskutov IG, Pukhalskiy VA (2010b) Phylogenetic relationships of tetraploid AB-genome Avena species evaluated by means of cytogenetic (C-banding and FISH) and RAPD analyses. J Bot 2010:1–13.  https://doi.org/10.1155/2010/742307 CrossRefGoogle Scholar
  4. Baum BR (1977) Oats: wild and cultivated. In: A monograph of the genus Avena L. (Poaceae). Biosystematics Research Institute, Department of Agriculture, Research Branch. Ottawa, CanadaGoogle Scholar
  5. Boczkowska M, Tarczyk E (2013) Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet Resour Crop Evol 60(7):2157–2169.  https://doi.org/10.1007/s10722-013-9984-1 CrossRefGoogle Scholar
  6. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371(6494):215–220.  https://doi.org/10.1038/371215a0 CrossRefPubMedGoogle Scholar
  7. Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa. Genome 37(4):607 (PMID:18470104)CrossRefPubMedGoogle Scholar
  8. Chew P, Meade K, Hayes A, Harjes C, Bao Y, Beattie AD, Puddephat I, Gusmini G, Tanksley SD (2016) A study on the genetic relationships of Avena taxa and the origins of hexaploid oat. Theor Appl Genet 129(7):1405–1415.  https://doi.org/10.1007/s00122-016-2712-4 CrossRefPubMedGoogle Scholar
  9. Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107(8):587–594CrossRefPubMedGoogle Scholar
  10. Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101(5–6):711–717.  https://doi.org/10.1007/s001220051535 CrossRefGoogle Scholar
  11. Cuadrado A, Cardoso M, Jouve N (2008) Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome 51(10):809–815.  https://doi.org/10.1139/G08-065 CrossRefPubMedGoogle Scholar
  12. Dechyeva D, Schmidt T (2016) Fluorescent in situ hybridization on extended chromatin fibers for high-resolution analysis of plant chromosomes. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics. Springer, New York, pp 23–33CrossRefGoogle Scholar
  13. Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109(1):48–54.  https://doi.org/10.1007/s00122-004-1615-y CrossRefPubMedGoogle Scholar
  14. Fominaya A, Hueros G, Loarce Y et al (1995) Chromosomal distribution of a repeated DNA sequence from C-genome heterochromatin and the identification of a new ribosomal DNA locus in the Avena genus. Genome 38(3):548–557.  https://doi.org/10.1139/g95-071 CrossRefPubMedGoogle Scholar
  15. Fominaya A, Loarce Y, González JM, Ferrer E (2016) Tyramide signal amplification: fluorescence in situ hybridization for identifying homoeologous chromosomes. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics. Springer, New York, pp 35–48CrossRefGoogle Scholar
  16. Fominaya A, Loarce Y, Montes A, Ferrer E (2017) Chromosomal distribution patterns of the (AC)10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena. Genome 60(3):216–227.  https://doi.org/10.1139/gen-2016-0146 CrossRefPubMedGoogle Scholar
  17. Fu YB, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117(3):333–342.  https://doi.org/10.1007/s00122-008-0778-3 CrossRefPubMedGoogle Scholar
  18. Fu YB, Chong J, Fetch T, Wang ML (2007) Microsatellite variation in Avena sterilis oat germplasm. Theor Appl Genet 114(6):1029–1038.  https://doi.org/10.1007/s00122-006-0496-7 CrossRefPubMedGoogle Scholar
  19. Fuchs J, Kuhne M, Schubert I (1998) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107(4):272–276CrossRefPubMedGoogle Scholar
  20. Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G (1998) Chromosome Res 6(2):97–104.  https://doi.org/10.1023/a:1009282828236 CrossRefPubMedGoogle Scholar
  21. Hasterok R, Dulawa J, Jenkins G, Leggett M, Langdon T (2006) Multi-substrate chromosome preparations for high throughput comparative FISH. BMC Biotechnol 6:20.  https://doi.org/10.1186/1472-6750-6-20 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hayasaki M, Morikawa T, Tarumoto I (2000) Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization. Genes Genet Syst 75(3):167–171.  https://doi.org/10.1266/ggs.75.167 CrossRefPubMedGoogle Scholar
  23. Irigoyen ML, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A (2001) Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena. TAG Theor Appl Genet 103(8):1160–1166.  https://doi.org/10.1007/s001220100723 CrossRefGoogle Scholar
  24. Irigoyen ML, Linares C, Ferrer E et al (2002) Fluorescence in situ hybridization mapping of Avena sativa, L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences. Genome 45(6):1230–1237.  https://doi.org/10.1139/g02-076 CrossRefPubMedGoogle Scholar
  25. Irigoyen ML, Ferrer E, Loarce Y (2006) Cloning and characterization of resistance gene analogs from Avena species. Genome 49(1):54–63.  https://doi.org/10.1139/g05-087 CrossRefPubMedGoogle Scholar
  26. Jellen EN (2016) C-banding of plant chromosomes. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics. Springer, New York, pp 1–5Google Scholar
  27. Jellen EN, Gill BS (1996) C-banding variation in the Moroccan oat species Avena agadiriana (2n = 4x = 28). Theor Appl Genet 92(6):726–732.  https://doi.org/10.1007/BF00226095 CrossRefPubMedGoogle Scholar
  28. Jellen EN, Gill BS, Cox TS (1994) Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37(4):613–618.  https://doi.org/10.1139/g94-087 CrossRefPubMedGoogle Scholar
  29. Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45(3):263–269.  https://doi.org/10.1023/a:1008657530466 CrossRefGoogle Scholar
  30. Leggett JM (1996) Using and conserving Avena genetic resources. In: Scoles GJ, Rossnagel BG (eds) Proceedings of the 5th international oat conference and 7th international barley genetic. Symposium. University of Saskatchewan, Saskatoon, pp 128–132Google Scholar
  31. Leggett JM (1998) Chromosome and genomic relationships between the diploid species Avena strigosa, A. eriantha and the tetraploid A. maroccana. Heredity 80(3):361–363.  https://doi.org/10.1046/j.1365-2540.1998.00305.x CrossRefGoogle Scholar
  32. Leggett JM, Markhand GS (1995) The genomic identification of some monosomics of Avena sativa L. cv. Sun II using genomic in situ hybridization. Genome 38(4):747–751.  https://doi.org/10.1139/g95-094 CrossRefPubMedGoogle Scholar
  33. Linares C, Irigoyen ML, Fominaya A (2000) Identification of C-genome chromosomes involved in intergenomic translocations in Avena sativa L. using cloned repetitive DNA sequences. Theor Appl Genet 100(3–4):353–360.  https://doi.org/10.1007/s001220050046 CrossRefGoogle Scholar
  34. Liu Q, Lin L, Zhou X, Peterson PM, Wen J (2017) Unraveling the evolutionary dynamics of ancient and recent polypoidization events in Avena (Poaceae). Sci Rep 7:41944.  https://doi.org/10.1038/srep41944 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Luo X, Tinker NA, Zhang H, Wight CP, Kang H, Fan X, Wang Y, Sha L, Zhou Y (2015) Centromeric position and genomic allocation of a repetitive sequence isolated from chromosome 18D of hexaploid oat, Avena sativa L. Genet Resour Crop Evol 62(1):1–4.  https://doi.org/10.1007/s10722-014-0170-x CrossRefGoogle Scholar
  36. Luo X, Tinker NA, Zhou Y, Wight CP, Liu J, Wan W, Chen L, Peng Y (2018a) Genomic relationships among sixteen species of Avena based on (ACT)6. Genome 61(1):63–70.  https://doi.org/10.1139/gen-2017-0132 CrossRefPubMedGoogle Scholar
  37. Luo X, Tinker NA, Zhou Y, Liu J, Wan W, Chen L (2018b) Chromosomal distributions of oligo-Am 1 and (TTG)6 trinucleotide and their utilization in genome association analysis of sixteen Avena species. Genetic Resources & Crop Evolution 2018:1–11.  https://doi.org/10.1007/s10722-018-0639-0 Google Scholar
  38. Morikawa T, Nishihara M (2009) Genomic and polyploid evolution in genus Avena as revealed by RFLPs of repeated DNA sequences. Genes Genet Syst 84(3):199–208.  https://doi.org/10.1266/ggs.84.199 CrossRefPubMedGoogle Scholar
  39. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci 85(18):6622–6626.  https://doi.org/10.1073/pnas.85.18.6622 CrossRefPubMedGoogle Scholar
  40. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40(5):589–593.  https://doi.org/10.1139/g97-077 CrossRefPubMedGoogle Scholar
  41. Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2(1):65–71.  https://doi.org/10.1007/bf01539456 CrossRefPubMedGoogle Scholar
  42. Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39(1):93–104.  https://doi.org/10.1139/g96-013 CrossRefPubMedGoogle Scholar
  43. Peng YY, Baum BR, Ren CZ, Jiang QT, Chen GY, Zheng YL, Wei YM (2010) The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas 147(5):183–204.  https://doi.org/10.1111/j.1601-5223.2010.02172.x CrossRefPubMedGoogle Scholar
  44. Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Genetics Society of Canada, OttawaGoogle Scholar
  45. Röder MS, Lapitan NL, Sorrells ME, Tanksley SD (1993) Genetic and physical mapping of barley telomeres.[J]. Molecular & General Genetics 238(1–2):294–303 PMID: 8479435Google Scholar
  46. Rodionov AV, Tyupa NB, Kim ES, Machs EM, Loskutov IG (2005) Genomic configuration of the autotetraploid oat Species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence. Russ J Genet 41(5):518–528.  https://doi.org/10.1007/s11177-005-0120-y CrossRefGoogle Scholar
  47. Roser M, Winterfeld G, Grebenstein B, Hemleben V (2001) Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 21(2):198–217.  https://doi.org/10.1006/mpev.2001.1003 CrossRefPubMedGoogle Scholar
  48. Schlegel R, Gill BS (1984) N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can J Genet Cytol 26(6):765–769.  https://doi.org/10.1139/g84-121 CrossRefGoogle Scholar
  49. Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci 93(16):8761–8765.  https://doi.org/10.1073/pnas.93.16.8761 CrossRefPubMedGoogle Scholar
  50. Shelukhina O, Badaeva ED, Loskutov IG, Pukhal’skii VA (2007) A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. Genetika 43(6):747–761.  https://doi.org/10.1134/S102279540706004X PubMedGoogle Scholar
  51. Thomas H (1989) New species of Avena. In: Proceedings of the 3rd international oat conference, Lund, pp 18–23Google Scholar
  52. Xu SS, Liu Z, Zhang Q, Niu Z, Jan C, Cai X (2016) Chromosome painting by GISH and multicolor FISH. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics methods and protocols. University of Minnesota, Humana Press, USA, pp 7–22.  https://doi.org/10.1007/978-1-4939-3622-9 CrossRefGoogle Scholar
  53. Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu YB, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA (2016) High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor Appl Genet 129(11):2133–2149.  https://doi.org/10.1007/s00122-016-2762-7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang Q, Hanson L, Bennett MD et al (1999) Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 42(3):512.  https://doi.org/10.1139/gen-42-3-512 CrossRefPubMedGoogle Scholar
  55. Zhao L, Ning S, Yu J, Hao M, Zhang L, Yuan Z, Zheng Y, Liu D (2016) Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breed Sci 66(4):522–529.  https://doi.org/10.1270/jsbbs.16011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  1. 1.College of ForestrySichuan Agricultural UniversityChengduChina
  2. 2.Ottawa Research and Development CentreAgriculture and Agri-Food CanadaOttawaCanada
  3. 3.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations