Skip to main content
Log in

Overexpression of MeDREB1D confers tolerance to both drought and cold stresses in transgenic Arabidopsis

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An D, Yang J, Zhang P (2012) Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genom 13:64

    Article  CAS  Google Scholar 

  • Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W (2011) CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environ Exp Bot 74:255–260

    Article  CAS  Google Scholar 

  • Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang T, Zhang X (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39(5):6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Qu X, Zeng C, Xia Z, Lu C, Wang W (2015) Application of a modified cDNA-AFLP technique to screen drought-stress induced genes in cassava (Manihot esculenta Crantz). J Plant Biochem Physiol 03(146):2

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706(1–2):12–39

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Xv K, Meng Q, Li G, Yang X (2015) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ 38(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inze D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162(1):319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429(1–2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro EM (2015) Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery—including both photosystems II and I. Biochim Biophys Acta 1847(6–7):607–619

    Article  CAS  PubMed  Google Scholar 

  • Guttikonda SK, Valliyodan B, Neelakandan AK, Tran LS, Kumar R, Quach TN, Voothuluru P, Gutierrez-Gonzalez JJ, Aldrich DL, Pallardy SG, Sharp RE, Ho TH, Nguyen HT (2014) Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean. Mol Biol Rep 41(12):7995–8008

    Article  CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldrup A, Simpson DJ, Scheller HV (2000) Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana: the PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J Biol Chem 275(40):31211–31218

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25(8):2907–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix–loop–helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162(2):1178–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127(3):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Liu G, Liu Y, Zheng L, Nie X, Wang Y (2013) The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biol 13(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z (2013) Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11(6):747–758

    Article  CAS  PubMed  Google Scholar 

  • Li K, Yang X, Xu G, Cao Y, Lu B, Peng Z (2015a) Identification of putative odorant binding protein genes in Asecodes hispinarum, a parasitoid of coconut leaf beetle (Brontispa longissima) by antennal RNA-Seq analysis. Biochem Biophys Res Commun 467(3):514–520

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu Y, Zeng S, Xiao G, Wang G, Wang Y, Peng M, Huang H (2015b) Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing. PLoS One 10(8):e136439

    Google Scholar 

  • Liao W, Wang G, Li Y, Wang B, Zhang P, Peng M (2016) Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Sci Rep 6:21542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4):1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Longoni P, Douchi D, Cariti F, Fucile G, Goldschmidt-Clermont M (2015) Phosphorylation of the Lhcb2 isoform of light harvesting complex II is central to state transitions. Plant Physiol 169(4):2874–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K (1819) Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 2:86–96

    Google Scholar 

  • Ouyang S, Liu Y, Liu P, Lei G, He S, Ma B, Zhang W, Zhang J, Chen S (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62(2):316–329

    Article  CAS  PubMed  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116(2–3):167–188

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee C, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82(2):193–207

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Wang Y, Cheng H, Sun C, Wu P, Wang L, Fei J (2013) Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140–141:68–76

    Article  PubMed  Google Scholar 

  • Pino M, Skinner JS, Park E, Jeknić Z, Hayes PM, Thomashow MF, Chen THH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5(5):591–604

    Article  CAS  PubMed  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31(4):393–406

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12(4):468–479

    Article  CAS  PubMed  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176(1):70–81

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24(6):2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ 34(8):1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Tavakol E, Sardaro MLS, Shariati JV, Rossini L, Porceddu E (2014) Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors. Gene 549(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112(2):171–175

    Article  CAS  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EAR, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10(1):105–124

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Nyaboga E, Poon JS, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W (2014) Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell 26(5):1913–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo M, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang H, Ceballos H, Lou Q, Zou M, Carvalho LJCB, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma P, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LAB, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M (2014a) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 5:5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu J, Guo H, He X, Wu W, Du J, Zhang Z, An X (2014b) Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiol Biochem 83:107–116

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen H, Li Q, Wei W, Li W, Zhang W, Ma B, Bi Y, Lai Y, Liu X, Man W, Zhang J, Chen S (2015) GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 83(2):224–236

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Huang J, Hao YJ, Zou HF, Wang HW, Zhao JY, Liu XY, Zhang WK, Ma B, Zhang JS, Chen SY (2009) Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS One 4(9):e7209

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei T, He Z, Tan X, Liu X, Yuan X, Luo Y, Hu S (2015) An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochem Biophys Res Commun 464(1):176–181

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique KH, Baum M, Guo P (2012) Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS One 7(5):e37573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Tattersall EA, Siddiqua MK, Cramer GR, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31(1):1–10

    CAS  PubMed  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M (2015) PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. Plant Physiol 167(4):1566–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki Y, Randall SK (2016) Functionality of soybean CBF/DREB1 transcription factors. Plant Sci 246:80–90

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M (2015) Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot 66(5):1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170(10):923–933

    Article  CAS  PubMed  Google Scholar 

  • Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J (2014) Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57(4):408–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China NSFC-CGIAR Project (Grant No. 31561143012), the Hainan Province Innovative Research Team Foundation (Grant No. 2016CXTD), and the National Science Foundation of China (Grant No. 31501378).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Peng or Mengbin Ruan.

Additional information

Communicated by Y Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2016_2258_MOESM1_ESM.pptx

Fig. S1. MeDREB1D(R - 2) overexpressing plants performed dwarf phenotype and flowering delay. (A) The size of one-month-old WT, MeDREB1D(Y-3) and MeDREB1D(R-2) transgenic plants. (B) The size of leaves from one-month-old WT, MeDREB1D(Y-3) and MeDREB1D(R-2) transgenic plants. (C) Development of flowering stage of two-months-old WT, MeDREB1D(Y-3) and MeDREB1D(R-2) transgenic plants (PPTX 4967 kb)

11738_2016_2258_MOESM2_ESM.pptx

Fig. S2. Seedlings development of the WT and transgenic Arabidopsis under 15 % PEG treatment. (A) Seedling development of WT and MeDREB1D(R-2) overexpressing lines of Arabidopsis on MS agar medium and MS supplemented with 15 % PEG. (B) Seedling height and root length of WT and MeDREB1D(R-2) transgenic plants on MS agar medium and MS supplemented with 15 % PEG. (C) Seedling development of WT and MeDREB1D(Y-3) overexpressing lines of Arabidopsis on MS agar medium and MS supplemented with 15 % PEG. (D) Seedling height and root length of WT and MeDREB1D(Y-3) transgenic plants on MS agar medium and MS supplemented with 15 % PEG. Error bars show standard error for three independent replicates. Different letters represent a significant difference at P < 0.05 (PPTX 2426 kb)

11738_2016_2258_MOESM3_ESM.pptx

Fig. S3. Analysis of “Photosynthesis-antenna proteins” and “Photosynthesis” pathways from RNA-Seq in MeDREB1D(R - 2) and MeDREB1D(Y - 3) overexpressing plants. WT was taken as control for transgenic lines pathway. (A). “Photosynthesis-antenna proteins” pathway in MeDREB1D(R-2) overexpressing plants. (B). “Photosynthesis-antenna proteins” pathway in MeDREB1D(Y-3) overexpressing plants.(C) “Photosynthesis” pathway in MeDREB1D(R-2) overexpressing plants. (D). “Photosynthesis” pathway in MeDREB1D(Y-3) overexpressing plants. Green boxes represent up-regulated genes in the pathway. Red box represents down-regulated gene (PPTX 263 kb)

Supplementary material 4 (DOCX 15 kb)

Supplementary material 5 (DOCX 17 kb)

Supplementary material 6 (XLS 139 kb)

Supplementary material 7 (XLS 78 kb)

Supplementary material 8 (XLS 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liao, W., Yu, X. et al. Overexpression of MeDREB1D confers tolerance to both drought and cold stresses in transgenic Arabidopsis . Acta Physiol Plant 38, 243 (2016). https://doi.org/10.1007/s11738-016-2258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2258-8

Keywords

Navigation