Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations

  • Sonia Zaoui
  • Hélène Gautier
  • Doriane Bancel
  • Ghaya Chaabani
  • Hanen Wasli
  • Mokhtar Lachaâl
  • Najoua Karray-Bouraoui
Original Article


Safflower (Carthamus tinctorius L.) leaves are a good source of natural antioxidants, but their content is highly related to the plant response to NaCl constraint; therefore, optimizing culture conditions is required to improve leaf antioxidant accumulation while maintaining acceptable biomass production under stressful conditions. Leaves from plants grown at (0, 25, 50, and 75 mM NaCl) for three treatment durations (7, 15, and 30 days) were studied. NaCl concentrations and treatment durations for optimal biomass and biomolecules production were concluded. After 30 days of treatment, 25 mM NaCl enhanced total AsA leaf accumulation, while glutathione, soluble protein accumulation as well as SOD and GR activities were promoted at 75 mM NaCl. Non-significant changes were found for MDHAR and DHAR activity, added to, a very low level of reduced AsA, suggesting that ascorbate recycling was not an efficient system in safflower leaves under salinity. Our study demonstrates that C. tinctorius tolerates NaCl stress due to the complementary roles of powerful antioxidant molecules, such as ascorbate (for short-term treatments), glutathione (for long-term treatments), and increased SOD and GR activities.


Safflower Salt stress Optimization Secondary metabolites Antioxidant enzyme activity Ascorbate recycling 









Dehydroascorbate reductase


Monodehydroascorbate reductase




Reactive oxygen species


Superoxide dismutase


Glutathione reductase



We the authors of this article do firstly thank the Tunisian Ministry of Scientific Research and Technology for its support. We secondly do express our grateful acknowledgement to Agreenium who funded the research activity and transport during the internship in INRA Avignon, France. We do also thank Rabeb Tej and Amel Hamdi for their technical support during the experiments and Sylvie Sérino for the instructions and discussion during ascorbate assays. We do finally heartily thank Mr Adel Khadhraoui for providing language help.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93. doi: 10.1016/j.biotechadv.2008.09.003 CrossRefPubMedGoogle Scholar
  2. Ashraf M, McNeilly T (1990) Responses of four Brassica species to sodium chloride. Environ Exp Bot 30:475–487CrossRefGoogle Scholar
  3. Ben Abdallah S, Rabhi M, Harbaoui F, Zar-kalai F, Lachâal M, Karray-Bouraoui N (2012) Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress. Acta Physiol Plant 35:1161–1169. doi: 10.1007/s11738-012-1155-z CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Cavalcanti FR, Santos-Lima JPM, Ferreira-Silva SL, Viegas RA, Gomes-Silveira JA (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164:591–600. doi: 10.1016/j.jplph.2006.03.004 CrossRefPubMedGoogle Scholar
  6. Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319. doi: 10.1139/A10-014 CrossRefGoogle Scholar
  7. Córdoba-Pedregosa M, Córdoba F, Villalba JM, González-Reyes JA (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate related enzyme activities in onion roots. Plant Physiol 131:697–706. doi: 10.1104/pp.012682 CrossRefGoogle Scholar
  8. Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196. doi: 10.1016/0003-2697(89)90188-7 CrossRefPubMedGoogle Scholar
  9. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescent correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. doi: 10.1093/jxb/32.1.93 CrossRefGoogle Scholar
  10. Gautier H, Lopez-Lauri F, Massot C, Murshed R, Marty I, Grassely D, Keller C, Sallanon H, Génard M (2010) Impact of ripening and salinity on tomato fruit ascorbate content and enzymatic activities related to ascorbate recycling. Funct Plant Sci Biotechnol 4:66–75Google Scholar
  11. Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crop Prod 64:175–181. doi: 10.1016/j.indcrop.2014.10.058 CrossRefGoogle Scholar
  12. Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule. J Exp Bot 64(1):33–53. doi: 10.1093/jxb/ers297 CrossRefPubMedGoogle Scholar
  13. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212. doi: 10.1016/0003-2697(80)90139-6 CrossRefPubMedGoogle Scholar
  14. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon Press, OxfordGoogle Scholar
  15. Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61(2):521–535. doi: 10.1093/jxb/erp321 CrossRefPubMedGoogle Scholar
  16. Hoagland CR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment 347Google Scholar
  17. Hojati M, Mohammad SA, Sanavy M, Karimi M, Ghanati F (2011) Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiol Plant 33:105–112. doi: 10.1007/s11738-010-0521-y CrossRefGoogle Scholar
  18. Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049. doi: 10.1093/jxb/eri301 CrossRefPubMedGoogle Scholar
  19. Karray-Bouraoui N, Hamrouni-Maâzoul H, Rabhi M, Harbaoui F, Attia H, Oueslati S, Ksouri R, Lachaâl M (2010) Enzymatic and non-enzymatic antioxidant responses of two Mentha pulegium provenances to salt stress. J Med Plants Res 4(23):2518–2524. doi: 10.5897/JMPR10.461 CrossRefGoogle Scholar
  20. Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaâl M (2011) Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant 33(4):1435–1444. doi: 10.1007/s11738-010-0679-3 CrossRefGoogle Scholar
  21. Kiarostami Kh, Mohseni R, Saboora A (2010) Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology & Biochemistry 6(3):114–122Google Scholar
  22. Li M, Ma F, Guo C, Liu J (2010) Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiol Biochem 48:216–224. doi: 10.1016/j.plaphy.2010.01.015 CrossRefPubMedGoogle Scholar
  23. Locato V, Cimini S, De Gara L (2013) Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci 4: 152. Maas, E-V., 1986. Salt tolerance of plants. Appl Agric Res 1:12–26. doi: 10.3389/fpls.2013.00152 Google Scholar
  24. Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26Google Scholar
  25. Mahmoudi H, Kaddour R, Huang J, Nasri N, Baatour O, M’Rah S, Hannoufa A, Lachaal M, Ouerghi Z (2011) Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiol Plant 33:1613–1622. doi: 10.1007/s11738-010-0696-2 CrossRefGoogle Scholar
  26. Massot C, Génard M, Stevens R, Gautier H (2010) Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol Biochem 48(9):751–757. doi: 10.1016/j.plaphy.2010.06.001 CrossRefPubMedGoogle Scholar
  27. Massot C, Bancel D, Lopez Lauri F, Truffault V, Baldet P, Stevens R, Gautier H (2013) High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS One 8(12):e84474. doi: 10.1371/journal.pone.0084474 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76. doi: 10.1016/S0098-8472(02)00058-8 CrossRefGoogle Scholar
  29. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x CrossRefPubMedGoogle Scholar
  30. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  31. Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal Biochem 383:320–322. doi: 10.1016/j.ab.2008.07.020 CrossRefPubMedGoogle Scholar
  32. Murshed R, Lopez-Lauri F, Sallanon H (2013) Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol Mol Biol Plants 19(3):363–378. doi: 10.1007/s12298-013-0173-7 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi: 10.1146/annurev.arplant.49.1.249 CrossRefPubMedGoogle Scholar
  34. Oueslati S, Karray-Bouraoui N, Attia H, Rabhi M, Ksouri R, Lachaal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32(2):289–296. doi: 10.1007/s11738-009-0406-0 CrossRefGoogle Scholar
  35. Rammal H, Younos C, Bouayed J, Chakou A, Necerbey N, Soulimani R (2009) Aperçu ethnobotanique et phytopharmacologique sur Carthamus tinctorius L. Phytothérapie 7:28–30. doi: 10.1007/s10298-008-0361-8 CrossRefGoogle Scholar
  36. Smirnoff N (1996) The function and metabolism of ascorbic acid in plant. Ann Bot 78:661–669. doi: 10.1006/anbo.1996.0175 CrossRefGoogle Scholar
  37. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathionereductase in crude tissue-homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413. doi: 10.1016/0003-2697(88)90564-7 CrossRefPubMedGoogle Scholar
  38. Stevens R, Buret M, Garchery C, Carretero Y, Causse M (2006) Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. J Agric Food Chem 54:6159–6165. doi: 10.1021/jf061241e CrossRefPubMedGoogle Scholar
  39. Sun Y, Kong X, Li C, Liu Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among arabidopsis accessions. PLoS One 10(5):e0124032. doi: 10.1371/journal.pone.0124032 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid. J Exp Bot 55(404):1955–1962. doi: 10.1093/jxb/erh194 CrossRefPubMedGoogle Scholar
  41. Venkatesh J, Park SW (2014) Role of l-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55:38. doi: 10.1186/1999-3110-55-38 CrossRefGoogle Scholar
  42. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369. doi: 10.1038/30728 CrossRefPubMedGoogle Scholar
  43. Xu Y, Zhu X, Chen Y, Gong Y, Liu L (2013) Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Plant Physiol Biochem 70:269–277. doi: 10.1016/j.plaphy.2013.05.041 CrossRefPubMedGoogle Scholar
  44. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Res 15:212–216. doi: 10.1016/0006-2944(76)90049-1 Google Scholar
  45. Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant l-ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27:173–182. doi: 10.1080/07388550701503626 CrossRefPubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016

Authors and Affiliations

  • Sonia Zaoui
    • 1
  • Hélène Gautier
    • 2
  • Doriane Bancel
    • 2
  • Ghaya Chaabani
    • 1
  • Hanen Wasli
    • 1
  • Mokhtar Lachaâl
    • 1
  • Najoua Karray-Bouraoui
    • 1
  1. 1.Unité de Physiologie et de Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.INRA, UR1115, PSH, Plantes et Systèmes de Culture HorticolesAvignon Cedex 9France

Personalised recommendations