Environmental cues for germination of the invasive bunch grass Pennisetum ciliare (L.) Link

  • Fernando Villa-Reyes
  • Erick de la Barrera
Original Article


Responses of seed germination to air temperature, water potential, light, and smoke were studied in the laboratory for seeds of the invasive bunch grass Pennisetum ciliare (L.) Link (syn. Cenchrus ciliare L.; buffel grass). First introduced to North America during the mid-twentieth Century for establishing pastures, this African bunch grass has become an invasive species of concern. Across all the experiments conducted, a low germination was observed for P. ciliare fascicles that never exceeded 30 % at 21 days after sowing. Optimal day/night air temperatures for germination, controlled with an environmental chamber, were 25/15 and 30/20 °C, while extreme temperatures of 15/5 and 45/35 °C inhibited germination. By sowing seeds of P. ciliare under different water potentials, created with aqueous solutions of polyethylene glycol, an optimum of −0.03 MPa led to the highest germination, while no germination was observed at −1.0 MPa. Monochromatic optical filters were utilized to germinate seeds under various wavelengths, of which red (650 nm) and far red (730 nm) led to the highest germination. In addition, seeds that were incubated in the dark had higher germination than those incubated under white light. Incubation in smoke water, which can stimulate germination of pyrophytic species, resulted in a marginal inhibition of germination compared with imbibition with distilled water.


Apomixis Buffel grass Cenchrus ciliaris Global change Pyrophyte Water potential 



We thank funding from a “SNI Licenciatura” Grant (102189) from the Consejo Nacional de Ciencia y Tecnología, Mexico, and PAPIIT Grants (IN224910, RN204013, IN205616) from the Dirección General del Personal Académico, UNAM. This manuscript was finalized while EdlB held a generous Fulbright NEXUS Fellowship. Cristobal Márquez and Adrián Calleros kindly assisted with preparing the figures.


  1. Amritphale D, Iyengar S, Sharma RK (1989) Effect of light and storage-temperature on seed-germination in Hygrophila-auriculata (Schumach) Haines. J Seed Technol 13:39–44Google Scholar
  2. Angevine M, Chabot B (1979) Seed germination syndromes in higher plants. In: Jain S, Johnson G, Raven P, Solbrig O (eds) Topics in plant population biology. Macmillan Press, New York, pp 188–202CrossRefGoogle Scholar
  3. Arriaga L, Castellanos VAE, Moreno E, Alarcon J (2004) Potential ecological distribution of alien invasive species and risk assessment: a case study of buffel grass in Arid Regions of Mexico. Conserv Biol 18:1504–1514. doi: 10.1111/j.1523-1739.2004.00166.x CrossRefGoogle Scholar
  4. Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd edn. Academic Press/Elsevier.  10.1016/B978-0-12-416677-6.00013-5
  5. Bhattarai SP, Fox J, Gyasi-Agyei Y (2008) Enhancing buffel grass seed germination by acid treatment for rapid vegetation establishment on railway batters. J Arid Environ 72:255–262. doi: 10.1016/j.jaridenv.2007.06.010 CrossRefGoogle Scholar
  6. Bonvissuto GL, Basso CA (2007) Germination of grasses and shrubs under various water stress and temperature conditions. Phyton-Int J Exp Bot 76:119–131Google Scholar
  7. Brady NC, Weil RR (1996) The nature and properties of soils, 11th edn. Prentice Hall, Upper Saddl RiverGoogle Scholar
  8. Brown NAC, van Staden J (1997) Smoke as a germination cue: a review. Plant Growth Regul 22:115–124. doi: 10.1023/A:1005852018644 CrossRefGoogle Scholar
  9. Castellanos A, Yanes F, Valdez-Zamudio D (2002) Drought-tolerant exotic buffelgrass and desertification. In: Tellman B (ed) Weeds across borders: proceedings of a North American conference. Arizona-Sonora Desert Museum, Tucson, pp 99–112Google Scholar
  10. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (2006) Especies Invasoras de Alto Impacto a la Biodiversidad: Prioridades en México. CANEI/CONABIO/SEMARNAT, MexicoGoogle Scholar
  11. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (2010) Estrategia Nacional de Especies Invasoras en México: Prevención, Control y Erradicación. CONABIO, MexicoGoogle Scholar
  12. Cox JR, Martin MH, Ibarra FA, Fourie JH, Rethman NFG, Wilcox DG (1988) The influence of climate and soils on the distribution of 4 African Grasses. J Range Manag 41:127–139CrossRefGoogle Scholar
  13. Cruz-Cardenas G, Lopez-Mata L, Alberto Ortiz-Solorio C, Luis Villasenor J, Ortiz E, Teodoro Silva J et al (2014) Interpolation of Mexican soil properties at a scale of 1:1,000,000. Geoderma 213:29–35. doi: 10.1016/j.geoderma.2013.07.014 CrossRefGoogle Scholar
  14. DaCosta M, Huang B (2009) Physiological adaptations of perennial grasses to drought stress. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a Tribute to Park S Nobel, Universidad Nacional Autónoma de México. p. 169–90Google Scholar
  15. Datta S, Seen S (1987) A comparison of the germination characteritics of Desmodium species. Acta Botanica Hungarica 33:125–131Google Scholar
  16. de la Barrera E (2008) Recent invasion of buffel grass (Cenchrus ciliaris) of a natural protected area from the southern Sonoran Desert. Revista Mexicana de Biodiversidad 79:385–392Google Scholar
  17. de la Barrera E, Castellanos AE (2007) High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol Manage 7:128–131. doi: 10.1111/j.1445-6664.2007.00248.x CrossRefGoogle Scholar
  18. de la Barrera E, Nobel PS (2003) Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis. J Arid Environ 53:297–306. doi: 10.1006/jare.2002.1050 CrossRefGoogle Scholar
  19. de la Barrera E, Pimienta-Barrios E, Schondube JE (2009) Reproductive ecophysiology. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to park S nobel, Universidad Nacional Autónoma de México. pp 301–335Google Scholar
  20. Dodd GL, Donovan LA (1999) Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am J Bot 86:1146–1153. doi: 10.2307/2656978
  21. Farmer RE, Charrete P, Searle IE, Tarjan DP (1984) Interaction of light, temperature, and chilling in the germination of black spruce. Canadian J Forest Res-Revue Canadienne de Recherche Forestiere 14:131–133. doi: 10.1139/x84-025 CrossRefGoogle Scholar
  22. Hilton JR (1982) An unusual effect of the far-red absorbing form of phytochrome-photoinhibition of seed germination in Bromus sterilis L. Planta 155:524–528. doi: 10.1007/BF01607578
  23. Ibarr A-F, Cox JR, Martin RMH, Crowl TA, Call CA (1995) Predicting buffelgrass survival across a geographical and environmental gradient. J Range Manage 48:53–59. doi: 10.2307/4002504
  24. Ibarra Flores F, Moreno Medina S, Marín Rivera M, Denogean Ballesteros F, Gerlach Barrera L (2005) La siembra del zacate buffel como una alternativa para incrementar la rentabilidad de los ranchos ganadros de la sierra de Sonora. Técnica Pecuaria Mexicana 43(173):183Google Scholar
  25. Justice OL, Bass LN (1978) Principles and practices of seed storage. First. U.S Department of Agriculture, WashingtonGoogle Scholar
  26. Keeley JE (1991) Seed-germination and life-history syndromes in the California Chaparral. Botan Rev 57:81–116. doi: 10.1007/BF02858766 CrossRefGoogle Scholar
  27. Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California Chaparral. Ecology 79:2320–2336. doi: 10.1890/0012-9658(1998)079[2320:SISGIC]2.0.CO;2
  28. Landis TD (2000) Where there’s smoke… There’s Germination? Native Plants J 1:25–29. doi: 10.3368/npj.1.1.25 CrossRefGoogle Scholar
  29. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer-Verlag, BerlinCrossRefGoogle Scholar
  30. Lloyd MV, Dixon KW, Sivasithamparam K (2000) Comparative effects of different smoke treatments on germination of Australian native plants. Austral Ecol 25:610–615. doi: 10.1111/j.1442-9993.2000.tb00066.x CrossRefGoogle Scholar
  31. Lyons KG, Maldonado-Leal BG, Owen G (2009) Community and ecosystem impact of the non-indigenous C4 Buffelgrass (Pennisetum ciliare) in the Sonoran desert, Sonora, Mexico. In: Espinosa-García FJ, Harper-Lore B, Hubbard T, Van Devender TR (eds) Invasive plants on the move and controlling them in North America. Arizona-Sonora Desert Museum, USA, pp 251–264Google Scholar
  32. Marshall VM, Lewis MM, Ostendorf B (2012) Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: a review. J Arid Environ 78:1–12. doi: 10.1016/j.jaridenv.2011.11.005 CrossRefGoogle Scholar
  33. Martin-R MH, Cox JR, Ibarra-F F (1995) Climatic Effects on Buffelgrass Productivity in the Sonoran Desert. J Range Manage 48:60–63. doi: 10.2307/4002505 CrossRefGoogle Scholar
  34. Martin-R M, Cox JR, Ibarra-F F, Alston DG, Banner RE, Malecheck JC (1999) Spittlebug and buffelgrass responses to summer fires in Mexico. J Range Manage 52:621–625. doi: 10.2307/4003632 CrossRefGoogle Scholar
  35. McDonald CJ, McPherson GR (2011) Fire behavior characteristics of buffelgrass-fueled fires and native plant community composition in invaded patches. J Arid Environ 75:1147–1154. doi: 10.1016/j.jaridenv.2011.04.024 CrossRefGoogle Scholar
  36. McLemore BF, Hansbrough T (1970) Influence of light on germination of Pinus palustris seeds. Physiol Planta 23:1–10. doi: 10.1111/j.1399-3054.1970.tb06385.x CrossRefGoogle Scholar
  37. Michel B, Radcliffe D (1995) A computer program relating solute potential to solution composition for five solutes. Agron J 87:126–130CrossRefGoogle Scholar
  38. Nobel PS, de la Barrera E (2004) CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Ann Appl Biol 144:1–8CrossRefGoogle Scholar
  39. Nobel, P. (2009) Physicochemical and environmental plant physiology. 4th edn. Academic Press/ElsevierGoogle Scholar
  40. Pausas, J.G. and Keeley, J.E. (2009) A Burning Story: The Role of Fire in the History of Life. Bioscience 59:593–601. doi: 10.1525/bio.2009.59.7.10
  41. Probert RJ, Smith RD (1986) The joint action of phytochrome and altering temperatures in the control of seed-germination in Dactylis glomerata. Physiol Planta 67:299–304. doi: 10.1111/j.1399-3054.1986.tb02460.x CrossRefGoogle Scholar
  42. Richardson DM, Sandlund OT, Schei PJ, Viken Å (1999) Commercial forestry and agroforestry as sources of invasive alien trees and shrubs. Invasive Species and Biodiversity Management Based on Papers Presented at the Norway/United Nations (UN) Conference on Alien Species, 2nd Trondheim Conference on Biodiversity, Trondheim, Norway, 1–5 July 1996, Kluwer Academic Publishers. pp 237–57Google Scholar
  43. Rundel P, Gibson A (2005) Ecological communities and processes in a Mojav desert ecosystem: rock valley. Cambridge University Press, NevadaGoogle Scholar
  44. Sanlund OT, Schei PJ, Viken Å (1999) Introduction: the many aspects of the invasive alien species problem. In: Sanlund OT, Schei PJ, Viken A (eds) Invasive species and biodiversity management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–7CrossRefGoogle Scholar
  45. Servicio de Información Agroalimentaria y Pesquera. (2015) Producción agropecuaria y pesquera [Internet] Google Scholar
  46. Servicio Meteorológico Nacional. (2015) Normales climatológicas por estación [Internet] Google Scholar
  47. Sharif-Zadeh F, Murdoch AJ (2000) The effects of different maturation conditions on seed dormancy and germination of Cenchrus ciliaris. Seed Sci Res 10:447–457CrossRefGoogle Scholar
  48. Sokal RR, Rohlf FJ (2012) Biometry. 4th edn. MacMillan EducationGoogle Scholar
  49. Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J et al (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim Change 102:595–623CrossRefGoogle Scholar
  50. Tinoco-Ojanguren C, Reyes-Ortega I, Sánchez-Coronado ME, Molina-Freaner F, Orozco-Segovia A (2016) Germination of an invasive Cenchrus ciliaris L. (buffel grass) population of the Sonoran Desert under various environmental conditions. South African J Botany 104:112–117. doi: 10.1016/j.sajb.2015.10.009 CrossRefGoogle Scholar
  51. Ungar IA, Binet P (1975) Factors influencing seed dormancy in Spergularia media (L.) C Presl. Aquatic Bot 1:45–55. doi: 10.1016/0304-3770(75)90006-6 CrossRefGoogle Scholar
  52. Villers-Ruiz L, Trejo-Vázquez I (2000) El cambio climático y la vegetación en México. In: Gay-García C (ed) México: Una Visión Hacia El Siglo XXI El Cambio Climático En México. Universidad Nacional Autónoma de México, México, pp 57–66Google Scholar
  53. Vázquez-Yanes C, Orozco-Segovia A (1996) Physiological ecology of seed dormancy and longevity in th tropical forest. In: Chazdon RL, Smith AP, Mulkey S (eds) Physiological ecology of tropical forests. Chapman and Hall, UK, pp 535–554Google Scholar
  54. Vázquez-Yanes C, Orozco A, Rojas M, Sánchez MS, Cervantes V (1997) La Reproducción de las Plantas: Semillas y Meristemos. Fondo de Cultura EconómicaGoogle Scholar
  55. Ward JP, Smith SE, McClaran MP (2006) Water requirements for emergence of buffelgrass (Pennisetum ciliare). Weed Sci 54:720–725. doi: 10.1614/WS-05-163R1.1 CrossRefGoogle Scholar
  56. Williams D, Baruch Z (2000) African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invas 2:123–140. doi: 10.1023/A:1010040524588 CrossRefGoogle Scholar
  57. Winkworth R (1971) Longevity of buffel grass seed sown in an arid Australian range. J Range Manag 24:141–145CrossRefGoogle Scholar
  58. Young DR, Nobel PS (1986) Predictions of soil-water potentials in the north-western Sonoran Desert. J Ecol 74:143–54. doi: 10.2307/2260355

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016

Authors and Affiliations

  1. 1.Dirección de Actividades Productivas AlternativasComisión Nacional de Áreas Naturales ProtegidasMexicoMexico
  2. 2.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations