Advertisement

The involvement of TsFtsH8 in Thellungiella salsuginea tolerance to cold and high light stresses

  • Xia Xia Liu
  • Can Fu
  • Wen Wen Yang
  • Quan Zhang
  • Hai Fan
  • Jian LiuEmail author
Original Article

Abstract

Thellungiella salsuginea is a plant that commonly grows in harsh environments of salinity and low temperature. Although the molecular mechanism underlying salt tolerance in T. salsuginea has been extensively explored, our understanding of how this species tolerates cold stress is limited. In a previous study, Wong et al. (2006) identified a cold-inducible TsFtsH8 gene in T. salsuginea. Based on the role of AtFtsH in D1 protein turnover and in maintaining the normal function of photosystem II, we hypothesized that TsFtsH8 might be related to cold tolerance in T. salsuginea. In the present study, RNAi lines of TsFtsH8 were generated and its tolerance to cold was evaluated. The results showed that in early spring, TsFtsH8-RNAi lines underwent leaf variegation, severe chlorophyll decomposition, organelle deterioration, decrease in the maximum photochemical efficiency of photosystem II (F v /F m) and in the proportion of open photosystem II reaction centers (qP), and incomplete degradation of the 23 kDa fragment of the D1 protein. These findings suggest that TsFtsH8 is involved in the development of T. salsuginea in the early spring.

Keywords

Cold D1 protein High-intensity light Thellungiella TsFtsH8 Variegation 

Notes

Acknowledgments

The National Natural Science Foundation of China (Grant # 31270298) supported this study.

Supplementary material

11738_2016_2080_MOESM1_ESM.tif (1.9 mb)
Supplementary material 1 (TIFF 1937 kb)
11738_2016_2080_MOESM2_ESM.tif (550 kb)
Supplementary material 2 (TIFF 550 kb)
11738_2016_2080_MOESM3_ESM.tif (1.3 mb)
Supplementary material 3 (TIFF 1294 kb)
11738_2016_2080_MOESM4_ESM.tif (419 kb)
Supplementary material 4 (TIFF 418 kb)
11738_2016_2080_MOESM5_ESM.doc (32 kb)
Supplementary material 5 (DOC 31 kb)

References

  1. Aluru MR, Yu F, Fu A, Rodermel S (2006) Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot 57(9):1871–1881CrossRefPubMedGoogle Scholar
  2. Chen M, Jensen M, Rodermel S (1999) The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis. J Hered 90(1):207–214CrossRefPubMedGoogle Scholar
  3. Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44(5):826–839CrossRefPubMedGoogle Scholar
  4. Inan G, Zhang Q, Li P, Wang Z, Cao Z et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135(3):1718–1737CrossRefPubMedPubMedCentralGoogle Scholar
  5. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol 77(2):483–485CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ivashuta S, Uchiyama K, Gau M, Shimamoto Y (2002) Linear amplification coupled with controlled extension as a means of probe amplification in a cDNA array and gene expression analysis during cold acclimation in alfalfa (Medicago sativa L.). J Exp Bot 53(367):351–359CrossRefPubMedGoogle Scholar
  7. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29(7):1220–1234CrossRefPubMedGoogle Scholar
  8. Kato Y, Sun X, Zhang L, Sakamoto W (2012) Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol 159(4):1428–1439CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kettunen R, Tyystjärvi E, Aro EM (1996) Degradation pattern of phpotosystem II reaction center protein D1 in intact Leaves. Plant Physiol 111(4):1183–1190CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kuo J (2007) Processing plant tissues for ultrastructural study. Methods Mol Biol 369:35–45CrossRefPubMedGoogle Scholar
  11. Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 Protein. Plant Cell 12(3):419–431CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liu X, Yu F, Rodermel S (2010) An Arabidopsis pentatricopeptide repeat protein, SUPPRESSOR OF VARIEGATION7, is required for FtsH-mediated chloroplast biogenesis. Plant Physiol 154(4):1588–1601CrossRefPubMedPubMedCentralGoogle Scholar
  13. Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40(4):732–741CrossRefGoogle Scholar
  14. Nixon PJ, Barker M, Boehm M, Vries Rd, Komenda J (2005) FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56(411):357–363CrossRefPubMedGoogle Scholar
  15. Russell AW, Critchley C, Robinson SA, Franklin LA, Seaton G, Chow WS, Anderson JM, Osmond CB (1995) Photosystem II regulation and dynamics of the chloroplast D1 Protein in Arabidopsis leaves during photosynthesis and photoinhibition. Plant Physiol 107:943–952PubMedPubMedCentralGoogle Scholar
  16. Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of yellow variegated1 and yellow variegated 2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15(12):2843–2855CrossRefPubMedPubMedCentralGoogle Scholar
  17. Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in synechocystis sp PCC 6803. Plant Cell 15(9):2152–2164CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sinvany-Villalobo G, Davydov O, Ben-Ari G, Zaltsman A, Raskind A, Adam Z (2004) Expression in multigene families. Analysis of chloroplast and mitochondrial proteases. Plant Physiol 135(3):1336–1345CrossRefPubMedPubMedCentralGoogle Scholar
  19. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135(3):1697–1709CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140(4):1437–1450CrossRefPubMedPubMedCentralGoogle Scholar
  21. Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayakeet M et al (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. PNAS 109(30):12219–12224CrossRefPubMedPubMedCentralGoogle Scholar
  22. Yang PF, Li XJ, Lian Y, Jing YX, Shen SH, Kuang TY (2006) Proteomic analysis of the response of Liangyoupeijiu (a super high-yield hybris rice) seedling to cold stress. J Inte Plant Biol 48(8):945–951CrossRefGoogle Scholar
  23. Yu F, Park S, Rodermel SR (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37:864–876CrossRefPubMedGoogle Scholar
  24. Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant, Cell Environ 30(3):350–365CrossRefGoogle Scholar
  25. Yu F, LiuX Alsheikh M, Park S, Rodermel S (2008) Mutations in SUPPRESSOR OF VARIEGATION1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in Arabidopsis. Plant Cell 20:1786–1804CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016

Authors and Affiliations

  • Xia Xia Liu
    • 1
  • Can Fu
    • 1
  • Wen Wen Yang
    • 1
  • Quan Zhang
    • 1
  • Hai Fan
    • 1
  • Jian Liu
    • 1
    Email author
  1. 1.College of Life ScienceShandong Normal UniversityJinanChina

Personalised recommendations