Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress

  • Monica Rachoski
  • Ayelen Gazquez
  • Pablo Calzadilla
  • Rodolfo Bezus
  • Andrés Rodriguez
  • Oscar Ruiz
  • Ana Menendez
  • Santiago MaialeEmail author
Original Paper


The aim of the present work was to explore physiological changes provoked by somaclonal variation in response to salinity. Two parental cultivars (La Candelaria and Yerua) and their derived somaclones were used as a source for breeding new rice lines with improved salt tolerance. We studied the effect of NaCl salt stress on chlorophyll fluorescence-related parameters, such as the maximum quantum yield of primary PSII photochemistry (F v/F m) and the performance index for energy conservation from photon absorbed by PSII antenna (PIABS). In addition malondialdehyde (MDA) content and leaf temperature (LT) responses were also measured. In somaclonal lines, F v/F m, PIABS, MDA and LT showed coefficients of variation of 13.7, 39.3, 25.5, and 3 %, respectively, for La Candelaria and 1.4, 17.6, 34.4 and 3 % for Yerua. However, the fragrant character did not differ in the aromatic somaclonal lines with respect to their parentals. Our results suggest that the F v/F m ratio would not be as good marker of PSII vitality as PIABS for salinized rice somaclones, unless they are highly susceptible to salinity. On other hand, the MDA content showed a strong negative correlation with the PIABS content in somaclones of both rice cultivars, suggesting that MDA levels could also be used as an oxidative damage index in rice somaclones.


Callus Rice Somaclones Salinity Fv/Fm PIABS Malondialdehyde 



This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).


  1. Bacarin M, Deuner S, da Silva P, Cassol A, Moura Silva D (2011) Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. Braz J Plant Physiol 23(4):245–253Google Scholar
  2. Bertin P, Busogoro J, Tilquin J, Kinet J, Bouharmont J (1996) Field evaluation and selection of rice somaclonal variants at different altitudes. Plant Breeding 115:183–188CrossRefGoogle Scholar
  3. Bradbury L, Henry R, Jin Q, Reinke R, Waters D (2005) A perfect marker for fragrance genotyping in rice. Mol Breeding 16:279–283CrossRefGoogle Scholar
  4. Chaudhary RC (2003) Speciality rices of the world: effect of WTO and IPR on its production trend and marketing. Food Agr Environ 1:34–41Google Scholar
  5. Du Z, Bramlage W (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agr Food Chem 40:1566–1570CrossRefGoogle Scholar
  6. Esfandiari E, Enayati V, Abbasi A (2011) Biochemical and physiological changes in response to salinity in two Durum Wheat (Triticum turgidum L.) genotypes. Not Bot Hort Agrobot Cluj 39(1):165–170Google Scholar
  7. Eyidogan F, Tufan O (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29:485–493CrossRefGoogle Scholar
  8. Gao JP, Chao DY, Lin YHX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750CrossRefGoogle Scholar
  9. González Moreno S, Perales Vela H, Salcedo Alvarez M (2008) La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB 27(4):119–129Google Scholar
  10. Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice of salinity tolerance. International Rice Research Institute. Discussion paper series No 22Google Scholar
  11. Hodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the tiobarbitúrico acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611CrossRefGoogle Scholar
  12. Jubair T, Salma U, Haque N, Akter F, Mukti I, Haque A, Ali R (2008) Callus induction and regeneration of local rice (Oryza sativa L) variety Topa. Asian J Plant Sci 7:514–518CrossRefGoogle Scholar
  13. Kalaji H, Govindjeeb Bosac K, Koscielniak J, Zuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Env Exp Bot 73:64–72CrossRefGoogle Scholar
  14. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19:964CrossRefGoogle Scholar
  15. Kucherenko LA (1979) Tissue culture in rice improvement: experiences in the USSR. Innovative approaches to rice breeding. IRRI, Manila, pp 93–102Google Scholar
  16. Kushwaha HR, Singla-Pareek SL, Sopory SK, Pareek A (2012) Understanding the “Commoneome” operative in plants in response to various abiotic stress. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley, WeinheimGoogle Scholar
  17. Larkin P, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214PubMedCrossRefGoogle Scholar
  18. Li G, Whang S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor beam (Ricinus communis L) seedling to salt stress levels. Ind Crop Prod 31:13–19CrossRefGoogle Scholar
  19. Lugay J, Juliano B (1964) Fatty acid composition of rice lipids by Gas-liquid Chromatography. J Am Oil Chem Soc 41(4):273–275CrossRefGoogle Scholar
  20. Maiale S, Pinciroli M, Bezus R, Scelzo L, Ruiz O, Vidal A (2010) “Evaluación frente a estrés salino de líneas y cultivares de arroz utilizados en mejoramiento en Argentina”. Acta XXVIII Argentine Meeting of Plant PhysiologistGoogle Scholar
  21. Mandal AB, Pramanik SC, Chowdhury B, Bandyopadhyay AK (1999) Salt-tolerant Pokkali somaclones: performance under normal and saline soils in Bay Islands. Field Crop Res 61:13–21CrossRefGoogle Scholar
  22. Mehta P, Allakhverdiev S, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255PubMedCrossRefGoogle Scholar
  23. Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53(1):256–264PubMedCrossRefGoogle Scholar
  24. Møller IM, Jensen PE, Hansson A (2007) Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  25. Munns R, Termaat A (1986) Whole-plant response to salinity. Aust J Plant Physiol 13:143–160CrossRefGoogle Scholar
  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325CrossRefGoogle Scholar
  28. Okada K, Ikeuchi M, Yamamoto N, Ono T, Miyao M (1996) Selective and specific cleavage of the D1 and D2 proteins of photosystem II by exposure to singlet oxygen: factors responsible for the cleavage of proteins. BBA 1274:73–79Google Scholar
  29. Oono K (1978) Test tube breeding of rice by tissue culture. Trop Agr Res Ser 11:109–123Google Scholar
  30. Percival G, Fraser G, Oxenham G (2003) Foliar salt tolerance of acer genotypes using chlorophyll fluorescence. J Arboricult 29:61–65Google Scholar
  31. Redondo-Gómez S, Mateos-Naranjo E, Davy A, Fernández-Muñoz F, Castellanos E, Luque T, Figueroa M (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563PubMedCentralPubMedCrossRefGoogle Scholar
  32. Roy B, Mandal A (2005) Toward development of Al-toxicity tolerant line in Indica rice by exploiting somaclonal variation. Euphytica 145:221–247CrossRefGoogle Scholar
  33. Sasaki T (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  34. Scowcroft W, Larkin P (1988) Somaclonal variation, applications of plant and cell culture. Ciba Foundation Symposium Wiley, ChicesterGoogle Scholar
  35. Singh D, Sarkar R (2014) Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Funct Plant Biol 41:727–736CrossRefGoogle Scholar
  36. Sirault X, James R, Furbank R (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36(11):970–977CrossRefGoogle Scholar
  37. Srivastava A, Strasser RJ, Govindjee (1999) Greening of peas: parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392CrossRefGoogle Scholar
  38. Strasser RJ, Govindjee R (1992) On the OJIP fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in Photosynthesis, vol II. Kluwer Academic Publishers, DordrechtGoogle Scholar
  39. Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a florescent transient in plants and cyanobacteria. Photochem Photobiol 61:32–42CrossRefGoogle Scholar
  40. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, LondonGoogle Scholar
  41. Stirbet A, Govindjee (2011) On the relation between the kautsky effect (chorophyla a fluorescence induction and Photosystem II: basic and applications of the OJIP fluorescent transient. J Photoch Photobio B 104:236–257CrossRefGoogle Scholar
  42. Sun Z, Zhao C, Zheng KK, Qi X, Fu Y (1983) Somaclonal genetics of rice (Oryza sativa L.). Theor Appl Genet 67(1):67–73CrossRefGoogle Scholar
  43. Takai T, Yano M, Yamamoto T (2010) Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice. Field Crop Res 115:165–170CrossRefGoogle Scholar
  44. Valenti RA, Cerana JA, Wilson MG (2006) Calidad del agua para riego en áreas arroceras. In: Benavidez RA (ed) El arroz su cultivo y sustentabilidad en Entre Ríos. UNL-UNER. Concepción del Uruguay, ArgentinaGoogle Scholar
  45. Wankhade S, Sanz A (2013) Chronic mild salinity affects source leaves physiology and productivity parameters of rice plants. Plant Soil 367:663–672CrossRefGoogle Scholar
  46. Xia J, Li Y, Zou D (2004) Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquat Bot 80:129–137CrossRefGoogle Scholar
  47. Yamauchi Y, Sugimoto Y (2010) Effect of protein modifcation by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins. Planta 231:1077–1088PubMedCrossRefGoogle Scholar
  48. Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46:786–793PubMedCrossRefGoogle Scholar
  49. Yoshida S, Forno D, Cock J, Gomez K (1976) Laboratori manual for physiological studies of rice. IRRI 3rd edn, Los bañosGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2015

Authors and Affiliations

  • Monica Rachoski
    • 1
  • Ayelen Gazquez
    • 1
  • Pablo Calzadilla
    • 1
  • Rodolfo Bezus
    • 2
  • Andrés Rodriguez
    • 1
  • Oscar Ruiz
    • 1
  • Ana Menendez
    • 3
  • Santiago Maiale
    • 1
    Email author
  1. 1.UB1-IIB-INTECH, Conicet-UnsamChascomúsArgentina
  2. 2.Rice Breeding ProgramUNLPLa PlataArgentina
  3. 3.FCEyN, UBACABAArgentina

Personalised recommendations