Advertisement

Acta Physiologiae Plantarum

, Volume 36, Issue 11, pp 2947–2958 | Cite as

Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants

  • Prakash M. Gopalakrishnan Nair
  • Seung-Hyun Kim
  • Ill Min ChungEmail author
Original Paper

Abstract

In this study, the toxic effect of copper oxide nanoparticles (CuONPs) at the physiological and molecular level was investigated in mung bean (Vigna radiata L.) plants. The seedlings were grown in half strength Murashige and Skoog medium supplemented with different concentrations of CuONPs (0, 20, 50, 100, 200 and 500 mg l−1) for 21 days under controlled growth conditions. Exposure to 200 and 500 mg l−1 of CuONPs significantly reduced shoot length and biomass. Significant reduction in root length and biomass was observed upon exposure to all concentrations of CuONPs. Retardation of primary and lateral root growth was observed upon exposure to different concentrations of CuONPs. At 100, 200 and 500 mg l−1 of CuONPs exposure, the total chlorophyll contents reduced significantly. Exposure to different concentrations of CuONPs has not resulted in any significant change in carotenoid contents. The proline content significantly increased upon exposure to 100, 200 and 500 mg l−1 of CuONPs. Significant increase in hydrogen peroxide content and lipid peroxidation was observed in roots upon exposure to 20, 50, 100, 200 and 500 mg l−1 of CuONPs. Histochemical staining with nitroblue tetrazolium and treatment with 3′-(p-hydroxyphenyl) fluorescein indicated a concentration-dependent increase in reactive oxygen species generation in roots. Exposure to CuONPs has resulted in excess lignification of roots cells as revealed by phloroglucionol-HCl staining. Gene expression analysis using real-time polymerase chain reaction showed modulations in the expression of CuZn superoxide dismutase, catalase and ascorbate peroxidase genes in roots of CuONPs exposed plants.

Keywords

Vigna radiata Copper oxide nanoparticles Reactive oxygen species Lipid peroxidation Lignification Gene expression 

Notes

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea to Prakash M. Gopalakrishnan Nair. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A2A2A01002202).

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468PubMedCrossRefGoogle Scholar
  2. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefGoogle Scholar
  3. Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  4. Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116CrossRefGoogle Scholar
  5. Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in waste water and waste water sludge-evidence and impacts. Waste Manage 30:504–520CrossRefGoogle Scholar
  6. Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol 59:411–416PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458PubMedCrossRefGoogle Scholar
  8. Chiang HH, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis during development and in response to desiccation. Plant Cell Environ 18:1280–1290CrossRefGoogle Scholar
  9. Dimkpa CO, McLean JE, Latta DE, Manango´n E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125CrossRefGoogle Scholar
  10. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J Ex Bot 53:1249–1254CrossRefGoogle Scholar
  11. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2010) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362CrossRefGoogle Scholar
  12. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186PubMedCrossRefGoogle Scholar
  13. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198PubMedCrossRefGoogle Scholar
  14. Hu X, Cook S, Wang P, Hwang HM (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072PubMedCrossRefGoogle Scholar
  15. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732PubMedCrossRefGoogle Scholar
  16. Kováčik J, Grúz J, Klejdus B, Štorka F, Marchiosid R, Ferrarese-Filhod O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389CrossRefGoogle Scholar
  17. Kwasniewskia M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I (2013) Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol 170:185–195CrossRefGoogle Scholar
  18. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants Mung bean (Phaseolus radiatus) and Wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  19. Lee CW, Mahendra S, Zodrow KLID, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefGoogle Scholar
  20. Lequeux H, Hermans C, Lutts S, Nathalie V (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682PubMedCrossRefGoogle Scholar
  21. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in enzymology, vol 148. Academic Press, Waltham, pp 350–382Google Scholar
  22. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  23. Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861CrossRefGoogle Scholar
  24. Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY (2012) Characterization of a novel Y2 K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol 53:930–942PubMedCrossRefGoogle Scholar
  25. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sus Chem Eng 1:768–778Google Scholar
  26. Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532Google Scholar
  27. Melegari SP, Perreault F, Popovic RHRC, Radovan Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440PubMedCrossRefGoogle Scholar
  28. Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion and molecular level changes. Environ Sci Pollut Res. doi: 10.1007/s11356-014-3210-3 Google Scholar
  29. OECD (organization for economic cooperation and development) (1984) Terrestrial plants, growth test. OECD guidelines for testing of chemicals. No. 208. OECD, ParisGoogle Scholar
  30. Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442PubMedCrossRefGoogle Scholar
  31. Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11CrossRefGoogle Scholar
  32. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 27:3485–3498CrossRefGoogle Scholar
  33. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140PubMedCrossRefGoogle Scholar
  34. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915PubMedCrossRefGoogle Scholar
  35. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  36. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicol 8:179–188CrossRefGoogle Scholar
  37. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  38. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575PubMedCrossRefGoogle Scholar
  39. Young AJ (1991) The protective role of carotenoids in higher plants. Physiol Plant 83:702–708CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2014

Authors and Affiliations

  • Prakash M. Gopalakrishnan Nair
    • 1
  • Seung-Hyun Kim
    • 1
  • Ill Min Chung
    • 1
    Email author
  1. 1.Department of Applied BiosciencesCollege of Life and Environmental Sciences, Konkuk UniversitySeoulSouth Korea

Personalised recommendations