Advertisement

Acta Physiologiae Plantarum

, Volume 36, Issue 4, pp 859–870 | Cite as

Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus

  • Hua Zhao
  • Lei Yu
  • Zexun Huai
  • Xiaohua Wang
  • Guangda Ding
  • Shuisen Chen
  • Peng Li
  • Fangsen XuEmail author
Original Paper

Abstract

The chlorophyll-deficient mutant (Bnchd1) is a spontaneous mutant of Brassica napus. Compared with the wild type, ‘Qingyou 10’, Bnchd1 exhibits distinct phenotypes, including interveinal yellowing leaves at the seedling stage and light-green leaves at the bolting stage, dwarfism throughout the lifespan, extremely low seed yields and abnormally shaped and early degradation of chloroplasts. Defective chloroplasts significantly reduce the levels of pigment in Bnchd1 at the seedling and bolting stages. Genetic analysis showed that two recessive genes, designated BnChd1-1 and BnChd1-2, are responsible for the light-green phenotype. BnChd1-1 was determined to be a single Mendelian factor in a BC2F1 population based on a phenotypic segregation ratio of 1:1. BnChd1-1 was mapped to a region of A01 using a BC3F1 population of 394 individuals with 198 green and 196 light-green plants. Within the collinear region in Brassica rapa, six genes that might be involved in chloroplast thylakoid development and NDH dehydrogenase activity were annotated. Among the six candidate genes, reverse transcription-polymerase chain reaction revealed that the mRNA levels of Bra021529 and Bra040517 were undetectable in the mutant and high in Qingyou10 and Westar plants at the seedling stage. Additionally, DNA sequence differences were identified across the gene and promoter region. Protein sequence differences were also observed in Bra040517, while no sequence differences in Bra021529 were observed between Bnchd1 and Qingyou10. Therefore, the homologue of Bra040517 is the most likely candidate gene for BnChd1-1.

Keywords

Brassica napus mutant BnChd1-1 Genetic mapping Chlorophyll Chloroplast 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31100243) and the Natural Sciences and Technology Fund of Hubei Province, China (2011CDB157). We thank Dr. Lingqiang Wang at Huazhong Agricultural University for the kind help in ultrastructure observation, and Dr. Nian Wang at Oil crops research institute, CAAS for the technical assistance in bioinformatics.

Supplementary material

11738_2013_1464_MOESM1_ESM.doc (242 kb)
Plant phenotypic characterisation in Qingyou 10 and BnChd1. The phenotype of the mutant’s second youngest leaf from the top included a deficient leaf colour (chlorosis between veins) (a), a comparison of the leaf colour and size between Bnchd1 and Qingyou 10 (b), and all the leaves of a plant in the early seedling stage (2 weeks) (c). Growth comparisons of the first developed leaf from the apical growing point between Qingyou 10 and Bnchd1 mutants at the bolting stage (d). (DOC 242 kb)
11738_2013_1464_MOESM2_ESM.doc (49 kb)
The mRNA expression levels of four homologous genes involved in chlorophyll biosynthesis and chloroplast thylakoid development, Bra021411, Bra040519, Bra021327 and Bra040046, in Bnchd1, Qingyou 10 and Westar plants at the seedling stage. (DOC 49 kb)
11738_2013_1464_MOESM3_ESM.doc (805 kb)
Nucleotide sequence alignment of candidate genes between Qingyou 10, Westar and Bnchd1 plants. (DOC 805 kb)
11738_2013_1464_MOESM4_ESM.doc (176 kb)
Protein sequence alignment of candidate genes between Qingyou 10, Westar and Bnchd1. (DOC 176 kb)
11738_2013_1464_MOESM5_ESM.doc (34 kb)
Secondary structure differences in Bra040517 between Qingyou 10 and Bnchd1. (DOC 34 kb)
11738_2013_1464_MOESM6_ESM.doc (31 kb)
Supplementary material 6 (DOC 31 kb)

References

  1. Amin P, Sy DAC, Pilgrim ML, Parry DH, Nussaume L, Hoffman NE (1999) Arabidopsis mutants lacking the 43- and 54-Kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol 121:61–70PubMedCentralPubMedCrossRefGoogle Scholar
  2. Asakura Y, Hirohashi T, Kikuchi S, Belcher S, Osborne E, Yano S, Terashima I, Barkan A, Nakai M (2004) Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes. Plant Cell 16:201–214PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49(9):1350–1363PubMedCrossRefGoogle Scholar
  4. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American society of plant physiologists, RockvilleGoogle Scholar
  5. Chi YH, Moon JC, Park JH, Kim HS, Zulfugarov IS, Fanata WI, Jang HH, Lee JR, Lee YM, Kim ST, Chung YY, Lim CO, Kim JY, Yun DJ, Lee CH, Lee KO, Lee SY (2008) Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants. Plant Phys 148:808–817CrossRefGoogle Scholar
  6. Clark RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil 72:175–196CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  8. Eckhardt U, Grimm B, Hortensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14PubMedCrossRefGoogle Scholar
  9. Falbel TG, Staehelin LA (1996) Partial block in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Plant Physiol 97:311–320CrossRefGoogle Scholar
  10. Falbel TG, Meehl JB, Staehelin A (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832PubMedCentralPubMedCrossRefGoogle Scholar
  11. FAO (2010) FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome, Available from: http://faostat.fao.org/
  12. Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025PubMedCrossRefGoogle Scholar
  13. Folly P, Engel N (1999) Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274:21811–21816PubMedCrossRefGoogle Scholar
  14. Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44PubMedCrossRefGoogle Scholar
  15. Gohre V, Ossenbuhl F, Crevecoeur M, Eichacker LA, Rochaix JD (2006) One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in chlamydomonas. Plant Cell 18:1454–1466PubMedCentralPubMedCrossRefGoogle Scholar
  16. Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113:913–923PubMedCentralPubMedGoogle Scholar
  17. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77PubMedCrossRefGoogle Scholar
  18. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in B. napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849–1857PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hussian D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobett CS (2004) P-type ATPase heavy metal transporter with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339CrossRefGoogle Scholar
  20. Ito H, Ohtsuka T, Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271:1475–1479PubMedCrossRefGoogle Scholar
  21. Killough DT, Horlacher WR (1993) The inheritance of virescent yellow and red plant colors in cotton. Genetics 18:329–333Google Scholar
  22. Kirst H, García-Cerdán JG, Zurbriggen A, Melis A (2012a) Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 158:930–945PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kirst H, García-Cerdán JG, Zurbriggen A, Ruehle T, Melis A (2012b) Truncated photosystem chlorophyll antenna size in the green microalgae Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 160:2251–2260PubMedCentralPubMedCrossRefGoogle Scholar
  24. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271PubMedCentralPubMedCrossRefGoogle Scholar
  25. Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JD, Hoffman NE, Nussaume L (1999) A chromo-domain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11:87–99PubMedCentralPubMedGoogle Scholar
  26. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  27. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS Spectroscopy. In: Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New York, p F4.3.1–F4.3.8Google Scholar
  28. Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206PubMedCrossRefGoogle Scholar
  29. Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:668–691CrossRefGoogle Scholar
  31. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–213PubMedCrossRefGoogle Scholar
  32. Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263PubMedCrossRefGoogle Scholar
  33. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root/Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefGoogle Scholar
  34. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  35. Meyer M (2009) Rapeseed oil fuel––the crisis-proof home-made eco-fuel. Agrarforschung 16:262–267Google Scholar
  36. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ooijen JW Van (2006) JoinMap version 4: software for the calculation of genetic linkage maps in experimental populations. Plant Research International B.V. and Kyazma B.V, WageningenGoogle Scholar
  38. Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85PubMedCentralPubMedCrossRefGoogle Scholar
  39. Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310PubMedCrossRefGoogle Scholar
  40. Park J, Kim YY, Martinoia E, Lee Y (2008) Long-distance transporters of inorganic nutrients in plants. J Plant Biol 51:240–247CrossRefGoogle Scholar
  41. Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the B. napus genome. Genome 46:291–303PubMedCrossRefGoogle Scholar
  42. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the B. napus genome based on comparative analysis with A. thaliana. Genetics 171:765–778PubMedCentralPubMedCrossRefGoogle Scholar
  43. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523PubMedCrossRefGoogle Scholar
  44. Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplast-to nucleus signaling. J Biol Chem 282:2297–2304PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891PubMedCentralPubMedCrossRefGoogle Scholar
  46. Saric MR (1981) Genetic specificity in relation to plant mineral nutrition. J Plant Nutr 3:743–766CrossRefGoogle Scholar
  47. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C et al (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730PubMedCentralPubMedGoogle Scholar
  48. Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100:16119–16124PubMedCentralPubMedCrossRefGoogle Scholar
  49. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  50. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCentralPubMedCrossRefGoogle Scholar
  51. Wang X, The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species B. rapa. Nat Genet 43:1035–1039PubMedCrossRefGoogle Scholar
  52. Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J (2011) A sequence-based genetic linkage map as a reference for B. rapa pseudochromosome assembly. BMC Genom 12:239CrossRefGoogle Scholar
  53. Wang Y, Xu H, Kou JJ, Shi L, Zhang CY, Xu FS (2013) Dual effects of transgenic B. napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency. Plant Soil 362:231–246CrossRefGoogle Scholar
  54. Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40PubMedCentralPubMedCrossRefGoogle Scholar
  55. Xiao HG, Yang HW, Rao Y, Yang B, Zhu Y (2013) Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. Acta Agron Sin 39:520–529Google Scholar
  56. Zhao Y, Wang ML, Zhang YZ, Du LF, Pan TA (2000) Chlorophyll-reduced seedling mutant in oilseed rape, B. napus, for utilization in F1 hybrid production. Plant Breed 119:131–135CrossRefGoogle Scholar
  57. Zhao H, Shi L, Duan XL, Xu FS, Wang YH, Meng JL (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in B. napus. Mol Breed 22:495–506CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Authors and Affiliations

  • Hua Zhao
    • 1
    • 2
  • Lei Yu
    • 3
  • Zexun Huai
    • 1
  • Xiaohua Wang
    • 1
    • 2
  • Guangda Ding
    • 1
  • Shuisen Chen
    • 1
  • Peng Li
    • 4
  • Fangsen Xu
    • 1
    Email author
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  2. 2.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  3. 3.College of Urban and Environment scienceCentral China Normal UniversityWuhanChina
  4. 4.College of Landscape ArchitectureNortheast Forestry UniversityHarbinChina

Personalised recommendations