Acta Physiologiae Plantarum

, Volume 36, Issue 3, pp 755–765 | Cite as

Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1)

  • Luisa Louro Martins
  • Miguel Pedro MouratoEmail author
  • Sergio Baptista
  • Rafaela Reis
  • Florbela Carvalheiro
  • André M. Almeida
  • Pedro Fevereiro
  • Ann Cuypers
Original Paper


The response of tobacco plants genetically engineered with the AtTPS1 gene to stress induced by excess Cu and Cd was evaluated in hydroponic solution (100 and 400 μM Cu and 50 and 200 μM Cd) after a 48 h exposure. Two transgenic lines, transformed with the AtTPS1 (trehalose-6-phosphate synthase) gene from Arabidopsis, with different levels of trehalose-6-phosphate synthase expression (B5H, higher and B1F, lower), and a wild type (WT) were investigated. Protein content, antioxidative enzymes (CAT, POD, SOD, and APX), glucose, fructose, lipid peroxidation, hydrogen peroxide and Cd and Cu contents were determined in leaves. The two transgenic lines were differently influenced by Cd and Cu exposure as they induced a different antioxidant enzymatic defense response. B1F and B5H plants showed a better acclimation to Cd and excess Cu compared to WT. Furthermore B1F was more tolerant than B5H to Cd and excess Cu. B1F accumulated less Cd and Cu in leaves, probably due to a more efficient exclusion mechanism. Catalase was shown to be the most important enzyme in the antioxidative system of these plants.


Antioxidative enzymes Cadmium Copper Oxidative stress Tobacco 



Author AM Almeida acknowledges funding from the FCT—Fundação para a Ciência e a Tecnologia (Lisboa, Portugal)—in the form of grant PRAXIS XXI/BD/21270/1999 that allowed the development of the transgenic plant lines and also a research contract by the Ciência 2007 program. This work was funded by Research Project PTDC/AGR-AAM/102821/2008—Plant responses to trace element toxicity: cellular mechanisms for detoxification and tolerance— and also by FCT. The UIQA (Unidade de Investigação Química Ambiental, Research Unit Environmental Chemistry) is grant aided by the FCT. The authors acknowledge the technical assistance of Maria do Céu Penedo in analytical determination of sugars and of Dulce Santos and Susana Araújo in the production of transgenic plants.


  1. Aebi HE (1983) Catalase. In: Bergmeyer US (ed) Methods in enzymatic analysis, vol III. Oxireductases, transferases. Verlag Chemie, Weinheim, pp 273–277Google Scholar
  2. Ali MB, Yu KW, Hahn EJ, Paek KY (2005) Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng C.A. Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169(1):83–92CrossRefGoogle Scholar
  3. Almeida AM, Villalobos E, Araújo SS, Leyman BVDP, Alfaro-Cardoso L, Fevereiro PS, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176CrossRefGoogle Scholar
  4. Almeida AM, Cardoso LA, Santos DM, Torne JM, Fevereiro PS (2007a) Trehalose and its applications in plant biotechnology. Vitro Cell Dev Biol Plant 43(3):167–177CrossRefGoogle Scholar
  5. Almeida AM, Santos M, Villalobos E, Araujo SS, van Dijck P, Leyman B, Cardoso LA, Santos D, Fevereiro PS, Torne JM (2007b) Immunogold localization of trehalose-6-phosphate synthase in leaf segments of wild-type and transgenic tobacco plants expressing the AtTPS1 gene from Arabidopsis thaliana. Protoplasma 230(1–2):41–49PubMedCrossRefGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  7. Bailey NJC, Oven M, Holmes E, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via H-1 NMR spectroscopy and chemometrics. Phytochemistry 62(6):851–858PubMedCrossRefGoogle Scholar
  8. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276(26):24261–24267PubMedCrossRefGoogle Scholar
  9. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal Biochem 72(1–2):248–254PubMedCrossRefGoogle Scholar
  10. Burzyński M, Żurek A (2007) Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45(2):239–244CrossRefGoogle Scholar
  11. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719PubMedCrossRefGoogle Scholar
  12. Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82CrossRefGoogle Scholar
  13. Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459PubMedCrossRefGoogle Scholar
  14. Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159(8):869–876CrossRefGoogle Scholar
  15. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair A, Munters E, Artois T, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940PubMedCrossRefGoogle Scholar
  16. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Sanden SV, Belleghem FV, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168(4):309–316PubMedCrossRefGoogle Scholar
  17. De Vos CHR, Schat H, Dewaal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82(4):523–528CrossRefGoogle Scholar
  18. Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53(3):247–257CrossRefGoogle Scholar
  19. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266CrossRefGoogle Scholar
  20. Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227(3):625–639PubMedCrossRefGoogle Scholar
  21. Drazkiewicz M, Skorzynska-Polit E, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164(2):195–202CrossRefGoogle Scholar
  22. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57(3):246–273CrossRefGoogle Scholar
  23. Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659CrossRefGoogle Scholar
  24. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930PubMedCrossRefGoogle Scholar
  25. Gorinova N, Nedkovska M, Todorovska E, Simova-Stoilova L, Stoyanova Z, Georgieva K, Demirevska-Kepova K, Atanassov A, Herzig R (2007) Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Environ Pollut 145(1):161–170PubMedCrossRefGoogle Scholar
  26. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  27. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedCrossRefGoogle Scholar
  28. He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140PubMedCrossRefGoogle Scholar
  29. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220(1):113–115PubMedCrossRefGoogle Scholar
  30. Khatun S, Ali MB, Hahn E-J, Paek K-Y (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64(3):279–285CrossRefGoogle Scholar
  31. Kovácik J, Backor M (2008) Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake. Ecotoxicology 17(6):471–479PubMedCrossRefGoogle Scholar
  32. Luo Y, Li W-M, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63(1–3):378–384CrossRefGoogle Scholar
  33. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34(3):321–342CrossRefGoogle Scholar
  34. Martins LL, Mourato MP (2006) Effect of excess copper on tomato plants: growth parameters, enzyme activities, chlorophyll and mineral content. J Plant Nutr 29:2179–2198CrossRefGoogle Scholar
  35. Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill). Plant Sci 127(2):129–137CrossRefGoogle Scholar
  36. Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5PubMedCrossRefGoogle Scholar
  37. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410PubMedCrossRefGoogle Scholar
  38. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  39. Mourato MP, Martins LL, Campos-Andrada MP (2009) Physiological responses of Lupinus luteus to different copper concentrations. Biol Plant 53(1):105–111CrossRefGoogle Scholar
  40. Nery DDCM, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio ECA (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780(12):1408–1411CrossRefGoogle Scholar
  41. Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y, Sakurai M (2003) NMR and quantum chemical study on the OH…Pi and CH…O Interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose. J Am Chem Soc 125(42):12739–12748PubMedCrossRefGoogle Scholar
  42. Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115(4):531–540PubMedCrossRefGoogle Scholar
  43. Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  44. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365PubMedCrossRefGoogle Scholar
  45. Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50PubMedCrossRefGoogle Scholar
  47. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167(3):541–550CrossRefGoogle Scholar
  48. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170(2):274–282CrossRefGoogle Scholar
  49. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43(5):437–444PubMedCrossRefGoogle Scholar
  50. Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63(1–3):1–8CrossRefGoogle Scholar
  51. Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59(11):2905–2916PubMedCrossRefGoogle Scholar
  52. Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60(1):9–18PubMedCrossRefGoogle Scholar
  53. Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. VCH Verlagsgesellschaft, Weinheim, pp 149–177Google Scholar
  54. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60(5):437–440PubMedCrossRefGoogle Scholar
  55. Yannarelli GG, Gallego SM, Tomaro ML (2006) Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environ Exp Bot 56(2):174–181CrossRefGoogle Scholar
  56. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Authors and Affiliations

  • Luisa Louro Martins
    • 1
  • Miguel Pedro Mourato
    • 1
    Email author
  • Sergio Baptista
    • 1
  • Rafaela Reis
    • 1
  • Florbela Carvalheiro
    • 2
  • André M. Almeida
    • 3
    • 4
  • Pedro Fevereiro
    • 4
    • 5
  • Ann Cuypers
    • 6
  1. 1.UIQA, Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisbonPortugal
  2. 2.Unidade de BioenergiaLNEG-Laboratório Nacional de Energia e GeologiaLisbonPortugal
  3. 3.IICT-Instituto de Investigação Científica TropicalLisbonPortugal
  4. 4.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  5. 5.Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  6. 6.Environmental Biology, Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium

Personalised recommendations