Acta Physiologiae Plantarum

, Volume 35, Issue 12, pp 3277–3284 | Cite as

How do expansins control plant growth? A model for cell wall loosening via defect migration in cellulose microfibrils

  • Andrei LipchinskyEmail author


Expansins are plant cell wall-loosening proteins that promote cell growth and are essential for many critical developmental processes and stress responses. The molecular basis for expansin action is uncertain. Recently, it has been proposed that expansins loosen the wall by means of the generation of mobile conformational defects at the surface of cellulose microfibrils. The present work addresses this hypothesis by elaborating three assumptions: (1) microfibril–matrix interfaces cause steep stress gradients on the microfibril surface, (2) stress gradients drive the motion of conformational defects along the microfibril surface toward the microfibril–matrix interfaces, and (3) the approach of the defects to the microfibril–matrix interfaces facilitates the dissociation of matrix polysaccharides from cellulose microfibrils.


Expansin Extension growth Cellulose microfibril Plant cell wall 


  1. Bergenstrahle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose–liquid interface: a molecular dynamics study. Langmuir 25:4635–4642. doi: 10.1021/la803915c PubMedCrossRefGoogle Scholar
  2. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polymer 26:1123–1133. doi: 10.1016/0032-3861(85)90240-X CrossRefGoogle Scholar
  3. Carey RE, Hepler NK, Cosgrove DJ (2013) Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC Plant Biol 13:4. doi: 10.1186/1471-2229-13-4 PubMedCrossRefGoogle Scholar
  4. Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994. doi: 10.1104/pp.105.068767 PubMedCrossRefGoogle Scholar
  5. Choi D, Cho H-T, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518. doi: 10.1111/j.1399-3054.2006.00612.x Google Scholar
  6. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130CrossRefGoogle Scholar
  7. Cosgrove DJ (1993) Water-uptake by growing cells—an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int J Plant Sci 154:10–21PubMedCrossRefGoogle Scholar
  8. Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339. doi: 10.1104/pp.118.2.333 PubMedCrossRefGoogle Scholar
  9. Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 28:109–124. doi: 10.1016/S0981-9428(00)00164-9 CrossRefGoogle Scholar
  10. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326. doi: 10.1038/35030000 PubMedCrossRefGoogle Scholar
  11. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. doi: 10.1038/nrm1746 PubMedCrossRefGoogle Scholar
  12. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559–6564PubMedCrossRefGoogle Scholar
  13. Cosgrove DJ, Durachko DM, Li L-C (1998) Expansins may have cryptic endoglucanase activity and can synergize the breakdown of cellulose by fungal cellulases. Annu Meet Am Soc Plant Physiol Abstr 171Google Scholar
  14. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444. doi: 10.1093/pcp/pcf180 PubMedCrossRefGoogle Scholar
  15. Davies LM, Harris PJ, Newman RH (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337:587–593. doi: 10.1016/S0008-6215(02)00038-1 PubMedCrossRefGoogle Scholar
  16. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000. doi: 10.1021/bi101795q PubMedCrossRefGoogle Scholar
  17. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 286:16814–16823. doi: 10.1074/jbc.M111.225037 PubMedCrossRefGoogle Scholar
  18. Georgelis N, Yennawar N, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835. doi: 10.1073/pnas.1213200109 PubMedCrossRefGoogle Scholar
  19. Hackney JM, Atalla RH, VanderHart DL (1994) Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides: 13C-NMR Evidence. Int J Biol Macromol 16:215–218PubMedCrossRefGoogle Scholar
  20. Hardy BJ, Sarko A (1996) Molecular dynamic simulations and diffraction-based analysis of the native cellulose fibre: structural modeling of the I-α and I-β phases and their interconversion. Polymer 37:1833–1839. doi: 10.1016/0032-3861(96)87299-5 CrossRefGoogle Scholar
  21. Horikawa Y, Sugiyama J (2009) Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules 10:2235–2239. doi: 10.1021/bm900413k PubMedCrossRefGoogle Scholar
  22. Jarvis MC (2000) Interconversion of the Iα and Iβ crystalline forms of cellulose by bending. Carbohydr Res 325:150–154. doi: 10.1016/S0008-6215(99)00316-X PubMedCrossRefGoogle Scholar
  23. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881. doi: 10.1073/pnas.0809382105 PubMedCrossRefGoogle Scholar
  24. Kutschera U (1996) Cessation of cell elongation in rye coleoptiles is accompanied by a loss of cell-wall plasticity. J Exp Bot 47:1387–1394. doi: 10.1093/jxb/47.9.1387 CrossRefGoogle Scholar
  25. Li Z-C, Durachko DM, Cosgrove DJ (1993) An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta 191:349–356. doi: 10.1007/BF00195692 CrossRefGoogle Scholar
  26. Lipchinsky A (2010) A model for expansin action by activation of soliton excitations in cellulose microfibrils.  St. Petersburg University, Bulletin Ser. 3 No 1:108–119Google Scholar
  27. Manevich LI, Simmons VV (2008) Solitons in Macromolecular Systems. Nova Science Publishers, New York, p 134Google Scholar
  28. McQueen-Mason SJ, Cosgrove DJ (1994) Disruption of hydrogen-bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578. doi: 10.1073/pnas.91.14.6574 PubMedCrossRefGoogle Scholar
  29. McQueen-Mason S, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100PubMedGoogle Scholar
  30. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433. doi: 10.1105/tpc.4.11.1425 PubMedGoogle Scholar
  31. McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190:327–331. doi: 10.1007/BF00196961 PubMedCrossRefGoogle Scholar
  32. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi: 10.1021/ja0257319 PubMedCrossRefGoogle Scholar
  33. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi: 10.1021/ja037055w PubMedCrossRefGoogle Scholar
  34. Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53:241–252. doi: 10.1016/S0144-8617(03)00069-9 CrossRefGoogle Scholar
  35. Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435. doi: 10.1093/pcp/pcf171 PubMedCrossRefGoogle Scholar
  36. Ruel K, Nishiyama Y, Joseleau JP (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61. doi: 10.1016/j.plantsci.2012.05.008 PubMedCrossRefGoogle Scholar
  37. Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425. doi: 10.3732/ajb.93.10.1415 PubMedCrossRefGoogle Scholar
  38. Sharova EI (2007) Expansins: proteins involved in cell wall softening during plant growth and morphogenesis. Russ J Plant Physiol 54:713–727. doi: 10.1134/S1021443707060015 CrossRefGoogle Scholar
  39. Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, Cosgrove DJ (1995) Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell-wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249. doi: 10.1073/pnas.92.20.9245 PubMedCrossRefGoogle Scholar
  40. Smith BG, Harris PJ, Melton LD, Newman RH (1998) Crystalline cellulose in hydrated primary cell walls of three monocotyledons and one dicotyledon. Plant Cell Physiol 39:711–720CrossRefGoogle Scholar
  41. Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339. doi: 10.1021/bm034517p PubMedCrossRefGoogle Scholar
  42. Tabuchi A, Li L-C, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by expansin (group-1 allergen) from maize pollen. Plant J 68:546–559. doi: 10.1111/j.1365-313X.2011.04705.x PubMedCrossRefGoogle Scholar
  43. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74. doi: 10.1023/A:1015827121927 CrossRefGoogle Scholar
  44. Tomos D, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731Google Scholar
  45. Van Sandt V, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473. doi: 10.1093/aob/mcm248 PubMedCrossRefGoogle Scholar
  46. Vandenbussche F, Verbelen J-P, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284. doi: 10.1002/bies.20199 PubMedCrossRefGoogle Scholar
  47. Veytsman BA, Cosgrove DJ (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J 75:2240–2250. doi: 10.1016/S0006-3495(98)77668-4 PubMedCrossRefGoogle Scholar
  48. Viëtor RJ, Newman RH, Ha M-A, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731. doi: 10.1046/j.1365-313X.2002.01327.x PubMedCrossRefGoogle Scholar
  49. Wojtaszek P (2000) Genes and plant cell walls: a difficult relationship. Biol Rev 75:437–475. doi: 10.1111/j.1469-185X.2000.tb00051.x PubMedCrossRefGoogle Scholar
  50. Wojtaszek P, Volkmann D, Baluška F (2004) Polarity and cell walls. In: Lindsey K (ed) Polarity in Plants, Blackwell Publishing,Oxford pp 72–121.Google Scholar
  51. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671. doi: 10.1073/pnas.0605979103 PubMedCrossRefGoogle Scholar
  52. Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127:324–333. doi: 10.1104/pp.127.1.324 PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Authors and Affiliations

  1. 1.Department of Plant Physiology and BiochemistrySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations