Acta Physiologiae Plantarum

, Volume 34, Issue 5, pp 1607–1628 | Cite as

Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors

Review

Abstract

Tocopherols are lipophilic antioxidants and together with tocotrienols belong to the vitamin-E family. The four forms of tocopherols (α-, β-, γ- and δ-tocopherols) consist of a polar chromanol ring and lipophilic prenyl chain with differences in the position and number of methyl groups. The biosynthesis of tocopherols takes place mainly in plastids of higher plants from precursors derived from two metabolic pathways: homogentisic acid, an intermediate of degradation of aromatic amino acids, and phytyldiphosphate, which arises from methylerythritol phosphate pathway. The regulation of tocopherol biosynthesis in photosynthetic organisms occurs, at least partially, at the level of key enzymes as such including p-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27), homogentisate phytyltransferase (HPT, EC 2.5.1.-), tocopherol cyclase (TC, EC 5.4.99.-), and two methyltransferases. Tocopherol biosynthesis changes during plant development and in response toward different stresses induced by high-intensity light, drought, high salinity, heavy metals, and chilling. It is supposed that scavenging of lipid peroxy radicals and quenching of singlet oxygen are the main functions of tocopherols in photosynthetic organisms. The antioxidant action of tocopherols is related to the formation of tocopherol quinone and its following recycling or degradation. However, until now, the mechanisms of tocopherol degradation in plants have not been established in detail. This review focuses on mechanisms of tocopherols biosynthesis and its regulation in photosynthetic organisms. In addition, available information on tocopherol degradation is summarized.

Keywords

Tocopherols Methylerythritol phosphate pathway Shikimate pathway Stress Biosynthesis Degradation 

Abbreviations

DMPBQ

2,3-Dimethyl-6-phytyl-1,4-benzoquinone

GGDP

Geranylgeranyl diphosphate

HGA

Homogentisic acid

HPP

p-Hydroxyphenylpyruvate

HPT

Homogentisate phytyltransferase

HPPD

p-Hydroxyphenylpyruvate dioxygenase

MPBQ

2-Methyl-6-phytyl-1,4-benzoquinone

MPBQ MT

2-Methyl-6-phytyl-1,4-benzoquinone methyltransferase

PDP

Phytyldiphosphate

PUFA

Polyunsaturated fatty acid

ROS

Reactive oxygen species

TC

Tocopherol cyclase

γ-TMT

γ-Tocopherol methyltransferase

TQ

Tocopherol quinone

TQH2

Tocopherol quinol

References

  1. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ- tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738PubMedCrossRefGoogle Scholar
  2. Abbasi AR, Saur A, Hennig P, Tschiersch H, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2009) Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence. Plant Cell Environ 32:144–157PubMedCrossRefGoogle Scholar
  3. Abreu ME, Munné-Bosch S (2007) Photo- and antioxidant protection and salicylic acid accumulation during post-anthesis leaf senescence in Salvia lanigera grown under Mediterranean climate. Physiol Plant 131:590–598PubMedCrossRefGoogle Scholar
  4. Abreu ME, Munné-Bosch S (2008) Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants. Physiol Plant 134:369–379PubMedCrossRefGoogle Scholar
  5. Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, da Silva JVC, Fernie AR, Carrari F, Rossi M (2011) Genetic dissection of vitamin E biosynthesis in tomato. J Exp Bot 62:3781–3798PubMedCrossRefGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  7. Artetxe U, García-Plazaola JI, Hernández A, Becerril JM (2002) Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol Biochem 40:859–863CrossRefGoogle Scholar
  8. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiol 141:391–396PubMedCrossRefGoogle Scholar
  9. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93PubMedCrossRefGoogle Scholar
  10. Azzi A (2007) Molecular mechanism of α-tocopherol action. Free Radic Biol Med 43:16–21PubMedCrossRefGoogle Scholar
  11. Azzi A, Stocker A (2000) Vitamin E: non-antioxidant role. Prog Lipid Res 39:231–255PubMedCrossRefGoogle Scholar
  12. Backasch N, Schulz-Friedrich R, Appel J (2005) Influences on tocopherol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. J Plant Physiol 162:758–766PubMedCrossRefGoogle Scholar
  13. Bartoli CG, Simontacchi M, Montaldi E, Puntarulo S (1997) Oxidants and antioxidants during aging of chrysanthemum petals. Plant Sci 129:157–165CrossRefGoogle Scholar
  14. Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190PubMedCrossRefGoogle Scholar
  15. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  16. Brigelius-Flohé R (2005) Induction of drug metabolizing enzymes by vitamin E. J Plant Physiol 162:797–802PubMedCrossRefGoogle Scholar
  17. Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155PubMedGoogle Scholar
  18. Burkey KO, Wei C, Eason G, Ghosh P, Fenner GP (2000) Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean. Physiol Plant 110:195–200CrossRefGoogle Scholar
  19. Cahoon EB, Hall SH, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087PubMedCrossRefGoogle Scholar
  20. Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M (2003) Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environ Exp Bot 50:149–157CrossRefGoogle Scholar
  21. Cela J, Arrom L, Munné-Bosch S (2009a) Diurnal changes in photosystem II photochemistry, photoprotective compounds and stress-related phytohormones in the CAM plant, Aptenia cordifolia. Plant Sci 177:404–410CrossRefGoogle Scholar
  22. Cela J, Falk J, Munné-Bosch S (2009b) Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett 583:992–996PubMedCrossRefGoogle Scholar
  23. Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 Mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400PubMedCrossRefGoogle Scholar
  24. Chaudhary N, Khurana P (2009) Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Sci 177:479–491CrossRefGoogle Scholar
  25. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356PubMedCrossRefGoogle Scholar
  26. Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells 19:16–22PubMedGoogle Scholar
  27. Chrost B, Falk J, Kernebeck B, Molleken H, Krupinska K (1999) Tocopherol biosynthesis in senescing chloroplasts: a mechanism to protect envelope membranes against oxidative stress and a prerequisite for lipid remobilization? In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Kluwer Academic Publishers, Dordrecht, pp 171–176CrossRefGoogle Scholar
  28. Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124PubMedCrossRefGoogle Scholar
  29. Collakova E, DellaPenna D (2003a) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis thaliana. Plant Physiol 131:632–642PubMedCrossRefGoogle Scholar
  30. Collakova E, DellaPenna D (2003b) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940PubMedCrossRefGoogle Scholar
  31. Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257PubMedGoogle Scholar
  32. Cook W, Miles D (1992) Nuclear mutations affecting plastoquinone accumulation in maize. Photosynth Res 31:99–111CrossRefGoogle Scholar
  33. Dähnhardt D, Falk J, Appel J, van der Kooij TA, Schulz-Friedrich R, Krupinska K (2002) The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is not required for plastoquinone biosynthesis. FEBS Lett 523:177–181PubMedCrossRefGoogle Scholar
  34. Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPP, Rockville, pp 1044–1100Google Scholar
  35. DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125:160–163PubMedCrossRefGoogle Scholar
  36. DellaPenna D (2005) Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci 10:574–579PubMedCrossRefGoogle Scholar
  37. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedCrossRefGoogle Scholar
  38. Demurin Y, Skoric D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 115:33–36CrossRefGoogle Scholar
  39. Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143PubMedCrossRefGoogle Scholar
  40. Emerson OH, Emerson GA, Mohammad A, Evans HM (1937) The chemistry of vitamin E: tocopherols from various sources. J Biol Chem 122:99–107Google Scholar
  41. Endo F, Awata H, Tanoue A, Ishiguro M, Eda Y, Titani K, Matsuda I (1992) Primary structure deduced from complementary DNA sequence and expression in cultured cells of mammalian 4-hydroxyphenylpyruvic acid dioxygenase: evidence that the enzyme is a homodimer of identical subunit homologous to rat liver-specific alloantigen F. J Biol Chem 267:24235–24240PubMedGoogle Scholar
  42. Endrigkeit J, Wang X, Cai D, Zhang C, Long Y, Meng J, Jung C (2009) Genetic mapping, cloning, and functional characterization of the BnaX.VTE4 gene encoding a γ-tocopherol methyltransferase from oilseed rape. Theor Appl Genet 119:567–575PubMedCrossRefGoogle Scholar
  43. Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, Kuzuyama T, Seto H, Kamiya Y, León P (2000) Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol 124:95–103PubMedCrossRefGoogle Scholar
  44. Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909PubMedCrossRefGoogle Scholar
  45. Evans HM, Emerson OH, Emerson GA (1936) The isolation from wheat germ oil of an alcohol, α-tocopherol, having the properties of vitamin E. J Biol Chem 113:319–332Google Scholar
  46. Fachechi C, Nisi R, Gala R, Leone A, Caretto S (2007) Tocopherol biosynthesis is enhanced in photomixotrophic sunflower cell cultures. Plant Cell Rep 26:525–530PubMedCrossRefGoogle Scholar
  47. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566PubMedCrossRefGoogle Scholar
  48. Falk J, Krauβ N, Dähnhardt D, Krupinska K (2002) The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol 159:1245–1253CrossRefGoogle Scholar
  49. Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett 540:35–40PubMedCrossRefGoogle Scholar
  50. Furuya T, Yoshikawa T, Kimura T, Kaneko H (1987) Production of tocopherols by cell culture of safflower. Phytochemistry 26:2741–2747CrossRefGoogle Scholar
  51. Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366PubMedCrossRefGoogle Scholar
  52. Galatro A, Simontacchi M, Puntarulo S (2001) Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol Plant 113:564–570CrossRefGoogle Scholar
  53. Garcia I, Rodgers M, Lenne C, Roland A, Saillant A, Matringe M (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325:761–769PubMedGoogle Scholar
  54. Garcia I, Rodgers M, Pepin R, Hsich T, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119:1507–1516PubMedCrossRefGoogle Scholar
  55. García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Aust J Plant Physiol 28:225–232Google Scholar
  56. Gianello R, Libinaki R, Azzi A, Gavin PD, Negis Y, Zingg JM, Holt P, Keah HH, Griffey A, Smallridge A, West SM, Ogru E (2005) Alpha-tocopheryl phosphate: a novel, natural form of vitamin E. Free Radic Biol Med 39:970–976PubMedCrossRefGoogle Scholar
  57. Gosset DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714CrossRefGoogle Scholar
  58. Grabes T, Grimm B, Koroleva O, Jahns P (2001) Loss of α-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress. Planta 213:620–628CrossRefGoogle Scholar
  59. Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161PubMedCrossRefGoogle Scholar
  60. Guo J, Liu X, Li X, Chen S, Jin Z, Liu G (2006) Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J Appl Environ Bio 12:468–471Google Scholar
  61. Haberer K, Herbinger K, Alexou M, Rennenberg H, Tausz M (2008) Effects of drought and canopy ozone exposure on antioxidants in fine roots of mature European beech (Fagus sylvatica). Tree Physiol 28:713–719PubMedCrossRefGoogle Scholar
  62. Hakansson R, Jagerstad M (1990) The effect of thermal inactivation of lipoxygenase on the stability of vitamin E in wheat. J Cereal Sci 12:177–186CrossRefGoogle Scholar
  63. Hardy DJ, Gallegos MAV, Gaunt JK (1991) Metabolism of tocopherol by Pisum sativum. Phytochemistry 30:1099–1105CrossRefGoogle Scholar
  64. Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782PubMedCrossRefGoogle Scholar
  65. Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469PubMedCrossRefGoogle Scholar
  66. Herbinger K, Then C, Low M, Haberer K, Alexou M, Koch N, Remele K, Heerdt C, Grill D, Rennenberg H, Haberle K-H, Matyssek R, Tausz M, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defense in Fagus sylvatica under experimental freeair ozone exposure. Environ Pollut 137:476–482PubMedCrossRefGoogle Scholar
  67. Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311PubMedCrossRefGoogle Scholar
  68. Herrmann KH (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919PubMedGoogle Scholar
  69. Herrmann KH, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503PubMedCrossRefGoogle Scholar
  70. Hofer N, Alexou M, Heerdt C, Low M, Werner H, Matyssek R, Rennenberg H, Haberer K (2008) Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system. Environ Pollut 154:241–253PubMedCrossRefGoogle Scholar
  71. Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8:6–8PubMedCrossRefGoogle Scholar
  72. Hofius D, Hajirezaei MR, Geiger M, Tschiersch H, Melzer M, Sonnewald U (2004) RNAi-Mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135:1256–1268PubMedCrossRefGoogle Scholar
  73. Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770PubMedCrossRefGoogle Scholar
  74. Hormaetxe K, Esteban R, Becerril JM, García-Plazaola JI (2005) Dynamics of the α-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiol Plant 125:333–344CrossRefGoogle Scholar
  75. Horvath G, Wessjohann L, Bigirimana J, Monica H, Jansen M, Guisez Y, Caubergs R, Horemans N (2006) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallee). Plant Physiol Biochem 44:724–731PubMedCrossRefGoogle Scholar
  76. Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477PubMedCrossRefGoogle Scholar
  77. Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci 165:551–557CrossRefGoogle Scholar
  78. Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Sridharan R, Panneerselvam R (2008) Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids Surf B Biointerfaces 62:312–318PubMedCrossRefGoogle Scholar
  79. Jefford CW, Cadby PA (1981) Evaluation of models for the mechanism of 4-hydroxyphenylpyruvate dioxygenase. Experimentia 37:1134–1137CrossRefGoogle Scholar
  80. Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723PubMedCrossRefGoogle Scholar
  81. Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400PubMedCrossRefGoogle Scholar
  82. Kayal WE, Keller G, Debayles C, Kumar R, Weier D, Teulieres C, Marque C (2006) Regulation of tocopherol biosynthesis through transcriptional control of tocopherol cyclase during cold hardening in Eucalyptus gunnii. Physiol Plant 126:212–223CrossRefGoogle Scholar
  83. Keller Y, Bouvier F, D’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis: evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251:413–417PubMedCrossRefGoogle Scholar
  84. Kinney AJ (2006) Metabolic engineering in plants for human health and nutrition. Curr Opin Biotechnol 17:130–138PubMedCrossRefGoogle Scholar
  85. Kobayashi N, DellaPenna D (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J 55:607–618PubMedCrossRefGoogle Scholar
  86. Krieger-Liszkay A, Trebst A (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J Exp Bot 57:1677–1684PubMedCrossRefGoogle Scholar
  87. Kruk J, Holländer-Czytko H, Oettmeier W, Trebst A (2005) Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol 162:749–757PubMedCrossRefGoogle Scholar
  88. Kruk J, Szymańska R, Krupinska K (2008) Tocopherol quinone content of green algae and higher plants revised by a new high-sensitive fluorescence detection method using HPLC: effects of high light stress and senescence. J Plant Physiol 165:1238–1247PubMedCrossRefGoogle Scholar
  89. Kumar R, Raclaru M, Schüsseler T, Gruber J, Sadre R, Lühs W, Zarhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seed. FEBS Lett 579:1357–1364PubMedCrossRefGoogle Scholar
  90. Lassner MW, Savidge B, Weiss JD, Mitsky TA, Post-Beittenmiller MA, Valentin HE (2001) Nucleic acid sequences to proteins involved in tocopherol synthesis. WO 02/33060(Monsanto)Google Scholar
  91. Leipner J, Fracheboud Y, Stamp P (1999) Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 42:129–139CrossRefGoogle Scholar
  92. Leipner J, Stamp P, Frachebound Y (2000) Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 210:964–969PubMedCrossRefGoogle Scholar
  93. Li Y, Wang Z, Sun X, Tang K (2008) The current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J Integr Plant Biol 50:1057–1069PubMedCrossRefGoogle Scholar
  94. Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:787–792CrossRefGoogle Scholar
  95. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179PubMedCrossRefGoogle Scholar
  96. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136PubMedCrossRefGoogle Scholar
  97. Lindstedt S, Odelhog B (1987) 4-Hydroxyphenylpyruvate dioxygenase from Pseudomonas. Methods Ezymol 142:143–148CrossRefGoogle Scholar
  98. Liu X, Hua X, Guo J, Qi D, Wang D, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280PubMedCrossRefGoogle Scholar
  99. Lopukhina A, Dettenberg M, Weiler EW, Holländer-Czytko H (2001) Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis. Plant Physiol 126:1678–1687PubMedCrossRefGoogle Scholar
  100. Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant Cell Envir 29:2043–2054CrossRefGoogle Scholar
  101. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30PubMedCrossRefGoogle Scholar
  102. Ma Y, Baker RF, Magallanes-Lundback M, DellaPenna D, Braun DM (2008) Tie-dyed1 and Sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 227:527–538PubMedCrossRefGoogle Scholar
  103. Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265PubMedCrossRefGoogle Scholar
  104. Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherol protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435PubMedCrossRefGoogle Scholar
  105. Maeda H, Song W, Sage TL, DellaPenna D (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell 18:2710–2732PubMedCrossRefGoogle Scholar
  106. Maeda H, Sage TL, Isaac G, Welti R, DellaPenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20:452–470PubMedCrossRefGoogle Scholar
  107. Mène-Saffrané L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309PubMedCrossRefGoogle Scholar
  108. Mène-Saffrané L, Jones AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci USA 107:17815–17820PubMedCrossRefGoogle Scholar
  109. Munné-Bosch S (2005) The role of a-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748PubMedCrossRefGoogle Scholar
  110. Munné-Bosch S (2007) α-Tocopherol: a multifaceted molecule in plants. Vitam Horm 76:375–392PubMedCrossRefGoogle Scholar
  111. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57Google Scholar
  112. Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae plants differing in carnosic acid contents. Plant Physiol 131:1816–1825PubMedCrossRefGoogle Scholar
  113. Munné-Bosch S, Schwarz K, Alegre L (1999) Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol 121:1047–1052PubMedCrossRefGoogle Scholar
  114. Munné-Bosch S, Pecuelas J, Asensio D, Llusia J (2004) Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiol 136:2937–2947PubMedCrossRefGoogle Scholar
  115. Munné-Bosch S, Weiler EW, Alegre L, Muller M, Duchting P, Falk J (2007) α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691PubMedCrossRefGoogle Scholar
  116. Munné-Bosch S, Falara V, Pateraki I, Lopez-Carbonell M, Cela J, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145PubMedCrossRefGoogle Scholar
  117. Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774PubMedCrossRefGoogle Scholar
  118. Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpuruvate dioxygenase. Plant Physiol 117:1317–1323PubMedCrossRefGoogle Scholar
  119. Oh M-M, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583PubMedCrossRefGoogle Scholar
  120. Ouyang S, He S, Liu P, Zhang W, Zhang J, Chen S (2010) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci 54:181–188CrossRefGoogle Scholar
  121. Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500PubMedCrossRefGoogle Scholar
  122. Provencher LM, Miao L, Sinha N, Lucas WJ (2001) Sucrose Export Defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13:1127–1141PubMedGoogle Scholar
  123. Rautenkranz AAF, Li L, Machler F, Matinoia E, Oertli JJ (1994) Transport of ascorbic acid and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol 106:187–193PubMedGoogle Scholar
  124. Ren W, Zhao L, Zhang L, Wang Y, Cui L, Tang Y, Sun X, Tang K (2011) Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa. J Plant Physiol 168:1076–1083PubMedCrossRefGoogle Scholar
  125. Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100PubMedCrossRefGoogle Scholar
  126. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE (1989) Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol 89:1028–1030PubMedCrossRefGoogle Scholar
  127. Roche PA, Moorehead TJ, Hamilton GH (1982) Purification and properties of hog liver 4-hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys 216:62–73PubMedCrossRefGoogle Scholar
  128. Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis: elucidation and distribution. Pure Appl Chem 75:375–387CrossRefGoogle Scholar
  129. Rucińska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28:357–364CrossRefGoogle Scholar
  130. Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in a sucrose export defective1 maize mutant. Plant Cell 8:645–658PubMedGoogle Scholar
  131. Sadre R, Gruber J, Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580:5357–5362PubMedCrossRefGoogle Scholar
  132. Salmon S, Maziere JC, Santus R, Morliere P, Bouchemal N (1990) UV-B induced photoperoxidation of lipid of human LDL and HDL: a possible role of tryptophan residues. Photochem Photobiol 52:541–545PubMedCrossRefGoogle Scholar
  133. Sandorf I, Holländer-Czytko H (2002) Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179PubMedCrossRefGoogle Scholar
  134. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria: evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195PubMedCrossRefGoogle Scholar
  135. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432PubMedCrossRefGoogle Scholar
  136. Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp.PCC 6803 and Arabidopsis. Plant Physiol 129:321–332PubMedCrossRefGoogle Scholar
  137. Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785PubMedCrossRefGoogle Scholar
  138. Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20PubMedCrossRefGoogle Scholar
  139. Semchuk N, Lushchak OV, Falk J, Krupinska K, Lushchak VI (2009) Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem 47:384–390PubMedCrossRefGoogle Scholar
  140. Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14CrossRefGoogle Scholar
  141. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100PubMedCrossRefGoogle Scholar
  142. Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC 6803. FEBS Lett 511:1–5PubMedCrossRefGoogle Scholar
  143. Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects α-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol 103:949–953PubMedGoogle Scholar
  144. Stern MH, Robeson CD, Weisler L, Baxter JG (1947) δ-Tocopherol: isolation from soybean oil and properties. J Am Chem Soc 69:869–874PubMedCrossRefGoogle Scholar
  145. Stocker A, Ruttimann A, Woggon WD (1993) Identification of the tocopherol cyclase in the blue–green algae Anabaena variabilis Kutzing (cyanobacteria). Helv Chim Acta 76:1729–1738CrossRefGoogle Scholar
  146. Sun YC, Chen YC, Tian ZX, Li FM, Wang XY, Zhang J, Xiao ZL, Lin M, Gilmartin N, Dowling DN, Wang YP (2005) Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China. Appl Environ Microbiol 71:4771–4776PubMedCrossRefGoogle Scholar
  147. Szymańska R, Kruk J (2008) γ-Tocopherol dominates in young leaves of runner bean (Phaseolus coccineus) under a variety of growing conditions: the possible functions of γ-tocopherol. Phytochemistry 69:2142–2148PubMedCrossRefGoogle Scholar
  148. Szymańska R, Kruk J (2010) Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol 51:537–545PubMedCrossRefGoogle Scholar
  149. Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120:695–704PubMedCrossRefGoogle Scholar
  150. Tang S, Hass CG, Knapp SJ (2006) Ty3-gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:783–799PubMedCrossRefGoogle Scholar
  151. Tang YL, Ren WW, Zhang L, Tang KX (2011) Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae). Genet Mol Res 10:693–702PubMedCrossRefGoogle Scholar
  152. Tavva VS, Kim Y-H, Kagan IA, Dinkins RD, Kim K-H, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26:61–70PubMedCrossRefGoogle Scholar
  153. Then C, Herbinger K, Luis VC, Heerdt C, Matyssek R, Wieser G (2009) Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation. Environ Pollut 157:392–395PubMedCrossRefGoogle Scholar
  154. Tramontano WA, Ganci D, Pennino M, Dierenfeld ES (1992) Age dependent α-tocopherol concentrations in leaves of soybean and pinto beans. Phytochemistry 31:3349–3351CrossRefGoogle Scholar
  155. Trebst A, Depka B, Holländer-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160PubMedCrossRefGoogle Scholar
  156. Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920CrossRefGoogle Scholar
  157. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224PubMedCrossRefGoogle Scholar
  158. Van Doorn WG, Yoshimoto K (2008) Role of chloroplasts and other plastids in ageing and death of plants and animals: a tale of Vishnu and Shiva. Ageing Res Rev. doi:10.1016/j.arr.2009.08.003 Google Scholar
  159. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019PubMedCrossRefGoogle Scholar
  160. Venkatesh TV, Karunanandaa B, Free DL, Rottnek JM, Baszis SR, Valentin HE (2006) Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta 223:1134–1144PubMedCrossRefGoogle Scholar
  161. Wada GH, Fellman JH, Fujita FS, Roth E (1975) Purification and properties of avian liver p-hydroxyphenylpyruvate hydroxylase. J Biol Chem 250:6720–6726PubMedGoogle Scholar
  162. Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol 48:663–672PubMedGoogle Scholar
  163. White DA, Fisk ID, Gray DA (2006) Characterisation of oat (Avena sativa L.) oil bodies and intrinsically associated E-vitamers. J Cereal Sci 43:244–249CrossRefGoogle Scholar
  164. Wu JH, Croft KD (2007) Vitamin E metabolism. Mol Aspects Med 28:437–452PubMedCrossRefGoogle Scholar
  165. Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, Sarin NB (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438PubMedCrossRefGoogle Scholar
  166. Zbierzak AM, Kanwischer M, Wille C, Vidi PA, Giavalisco P, Lohmann A, Briesen I, Porfirova S, Brehelin C, Kessler F, Dörmann P (2010) Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J 425:389–399CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and BiotechnologyPrecarpathian National University Named After Vassyl StefanykIvano-FrankivskUkraine

Personalised recommendations