Acta Physiologiae Plantarum

, Volume 34, Issue 5, pp 1779–1788 | Cite as

Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants

  • Mohammad Farshidi
  • Ahmad AbdolzadehEmail author
  • Hamid Reza Sadeghipour
Original Paper


The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na+, K+, Cl, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100 mM NaCl each supplied with or without 1.7 mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na+ and Cl and a decrease in the concentration of K+, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na+ and Cl) accumulation while higher levels of essential minerals like K+, P and Fe were maintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.


Canola Oxidative stress Salinity Silicon 



We thank Golestan University Deputy of Research and Office of Higher Education for financial support to Mohammad Farshidi in the form of grants for M.Sc. research projects.


  1. Abdolzadeh A, Shima K, Lambers H, Chiba K (2008) Change in uptake, transport and accumulation of ions in Nerium oleander L. (Rosebay) as affected by different nitrogen source and salinity. Ann Bot 102:735–746. doi: 10.1093/aob/mcn156 PubMedCrossRefGoogle Scholar
  2. Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27(12):2101–2115. doi: 10.1081/PLN-200034641 CrossRefGoogle Scholar
  3. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi: 10.1104/pp.24.1.1 PubMedCrossRefGoogle Scholar
  4. Ashraf M, Rahmatullah KS, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391. doi: 10.1007/s11104-009-0019-9 CrossRefGoogle Scholar
  5. Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775CrossRefGoogle Scholar
  6. Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103Google Scholar
  7. Diatloff E, Rangel Z (2001) Compilation of simple spectrophotometric techniques for the determination of elements in nutrient solutions. J Plant Nutr 24(1):75–86. doi: 10.1081/PLN-100000313 CrossRefGoogle Scholar
  8. Egrinya Eneji A, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355–365. doi: 10.1080/01904160801894913 CrossRefGoogle Scholar
  9. Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. doi: 10.1021/jf00006a024 CrossRefGoogle Scholar
  10. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17 (Review)PubMedCrossRefGoogle Scholar
  11. FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome.
  12. Francois LE (1994) Growth, seed yield and oil content of canola growth under saline conditions. Agron J 86:233–237CrossRefGoogle Scholar
  13. Gao XP, Zou CQ, Wang LJ, Zhang FZ (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470. doi: 10.1081/PLN-200025865 CrossRefGoogle Scholar
  14. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. doi: 10.1111/j.1365-3040.2006.01572.x PubMedCrossRefGoogle Scholar
  15. Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114. doi: 10.1007/s11104-006-9137-9 CrossRefGoogle Scholar
  16. Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008) Influence of silicon on sunflower cultivars under drought stress, ii: essential and nonessential element uptake determined by polarized energy dispersive x-ray fluorescence. Commun Soil Sci Plant Anal 39:1904–1927. doi: 10.1080/00103620802134719 CrossRefGoogle Scholar
  17. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253. doi: 10.1111/j.1747-0765.2009.00443.x CrossRefGoogle Scholar
  18. Hattori T, Sonobe K, Inanaga S, An P, Morita S (2008) Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. J Plant Nutr 31:1046–1058. doi: 10.1080/01904160801928380 CrossRefGoogle Scholar
  19. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 12:189–198. doi: 10.1016/0003-9861(68)90654-1 CrossRefGoogle Scholar
  20. Hertwig B, Steb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553. doi: 0032-0889/92/100/1547/07/$01.00/0 PubMedCrossRefGoogle Scholar
  21. Imlay J (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi: 10.1146/annurev.micro.57.030502.090938 PubMedCrossRefGoogle Scholar
  22. Inal A, Pilbeam DJ, Gunes A (2009) Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr 32:112–128. doi: 10.1080/01904160802533767 CrossRefGoogle Scholar
  23. Irving GCJ, McLaughlin MJ (1990) A rapid and simple test for phosphorus in Olsen and Bray No. 1 extracts of soil. Commun Soil Sci Plant Anal 21:2245–2255. doi: 10.1080/00103629009368377 CrossRefGoogle Scholar
  24. Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354. doi: 10.1016/0304-3770(82)90026-2 CrossRefGoogle Scholar
  25. John MK, Chuah HH, Neufeld JH (1975) Application of improved azomethine-H method to the determination of boron in soils and plants. Anal Lett 8(8):559–568. doi: 10.1080/00032717508058240 CrossRefGoogle Scholar
  26. Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319PubMedCrossRefGoogle Scholar
  27. Karimi E, Abdolzadeh A, Sadeghipour H (2009) Increasing salt tolerance in Olive, Olea europaea L. plants by supplemental potassium nutrition involves changes in ion accumulation and anatomical attributes. Int J Plant Prod 3(4):1735–8043Google Scholar
  28. Liang YC, Shen QR, Shen ZG, Ma TS (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183. doi: 10.1080/01904169609365115 CrossRefGoogle Scholar
  29. Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. doi: 10.1078/0176-1617-01065 PubMedCrossRefGoogle Scholar
  30. Liang Y, ZhangW ChencQ, Liu Y, Ding R (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219. doi: 10.1016/j.envexpbot.2005.05.012 CrossRefGoogle Scholar
  31. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi: 10.1016/j.tplants.2006.06.007 PubMedCrossRefGoogle Scholar
  32. Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867–1876. doi: 10.1080/01904160802402666 CrossRefGoogle Scholar
  33. Mali M, Aery NC (2009) Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Commun Soil Sci Plant Anal 40:1041–1052. doi: 10.1080/00103620902753590 CrossRefGoogle Scholar
  34. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi: 10.1016/S1360-1385(02)02312-9 PubMedCrossRefGoogle Scholar
  35. Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8:293–297Google Scholar
  36. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880Google Scholar
  37. Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95. doi: 10.1007/s00709-009-0061-8 PubMedCrossRefGoogle Scholar
  38. Paridaa AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi: 10.1016/j.ecoenv.2004.06.010 CrossRefGoogle Scholar
  39. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272. doi: 10.1016/S0168-9452(00)00388-5 PubMedCrossRefGoogle Scholar
  40. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. doi: 10.1016/j.jplph.2005.05.010 PubMedCrossRefGoogle Scholar
  41. Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon underwater stress. J Plant Nutr 32:433–442. doi: 10.1080/01904160802660743 CrossRefGoogle Scholar
  42. Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246. doi: 10.1016/j.scienta.2009.09.005 CrossRefGoogle Scholar
  43. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi: 10.1093/aob/mcg058 PubMedCrossRefGoogle Scholar
  44. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Girgin AR, Aydemir S (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. doi: 10.1016/j.envexpbot.2007.06.006 CrossRefGoogle Scholar
  45. Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418. doi: 10.1016/j.plantsci.2003.08.005 CrossRefGoogle Scholar
  46. Vasudevan PT, Briggs M (2008) Biodiesel production: current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430. doi: 10.1007/s10295-008-0312-2 PubMedCrossRefGoogle Scholar
  47. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. doi: 10.1111/j.1747-0765.2007.00135.x CrossRefGoogle Scholar
  48. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium up take in rice (oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565. doi: 10.1046/j.1365-3040.1999.00418.x CrossRefGoogle Scholar
  49. Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. doi: 10.1016/j.plantsci.2004.04.020 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2012

Authors and Affiliations

  • Mohammad Farshidi
    • 1
    • 2
  • Ahmad Abdolzadeh
    • 1
    Email author
  • Hamid Reza Sadeghipour
    • 1
  1. 1.Department of Biology, Faculty of ScienceGolestan UniversityGorganIran
  2. 2.Department of Agriculture, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran

Personalised recommendations