Acta Physiologiae Plantarum

, Volume 34, Issue 5, pp 1669–1678 | Cite as

Effects of cement dust on volatile oil constituents and antioxidative metabolism of Aleppo pine (Pinus halepensis) needles

  • Salma Dziri
  • Karim HosniEmail author
Original Paper


The effects of cement dust on the chemical composition of essential oil, lipid peroxidation and antioxidant enzyme activities of Aleppo pine (P. halepensis) needles were studied. Cement dust resulted in a significant decrease in the yield of essential oil with the effect being more pronounced in the close vicinity of the cement factory. A concomitant decrease in all components of the oil was observed and δ-2-carene, trans-carveol, trans-carvyl acetate, α-terpinyl acetate, β-copaene, (E,E)-α-farnesene, α-calacorene, α-cadinene, spathulenol, humulene oxide II, 8-epi-γ-eudesmol, Ί-muurolol, cubenol and ethyl hexadecanoate have been proposed as biological indicators of cement dust. Moreover, a redirection of the secondary metabolism toward the biosynthesis of monoterpenes has been evidenced. Malondialdehydes (MDA), a decomposition product of polyunsaturated fatty acids, often considered as a suitable biomarker for lipid peroxidation was induced in the needles exposed to cement dust. Similarly, a remarkable induction of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities was noticed. The positive relationships were observed among activities of antioxidant enzymes, and between MDA content and activities of antioxidant enzymes, indicating the cooperative action of these antioxidant enzymes to cope with the oxidative stress induced by cement dust. The results obtained indicate that P. halepensis needles are useful bio-monitors of cement dust pollution.


Pinus halepensis Cement dust Essential oil Malondialdehydes Antioxidant enzymes 



This work was supported by the Direction Générale de la Recherche Scientifique (DGRS, Tunisia) and the Centre National de la Recherche Scientifique (CNRS, France), Research Project 11/R 09-11. The authors are grateful to the anonymous reviewer for his helpful comments and suggestions.

Supplementary material

11738_2012_962_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2213 kb)
11738_2012_962_MOESM2_ESM.doc (71 kb)
Supplementary material 2 (DOC 71 kb)
11738_2012_962_MOESM3_ESM.doc (160 kb)
Supplementary material 3 (DOC 159 kb)


  1. Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation, Carol StreamGoogle Scholar
  2. Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Izuta T (2010) Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Environ Pollut 158:1763–1767PubMedCrossRefGoogle Scholar
  3. Al-Alawi MM, Mandiwana KL (2007) The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J Hazard Mater 148:43–46. doi: 10.1016/j.jhazmat.2007.02.001 PubMedCrossRefGoogle Scholar
  4. Ali S, Ba P, Zeng F, Cai S, Shamsi IH, Qiu B, Wu F, Zhang G (2011) The ecotoxicological and interactive effects of chromium and aluminium on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ Exp Bot 70:185–191CrossRefGoogle Scholar
  5. Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24:905–916CrossRefGoogle Scholar
  6. Baby S, Raj G, Thaha ARM, Dan M (2010) Volatile chemistry of a plant: monosesquiterpenoid pattern in the growth cycle of Curcuma haritha. Flavour Fragr J 25:35–40. doi: 10.1002/ffj.1955 CrossRefGoogle Scholar
  7. Bačić T, Lynch AH, Cutler D (1999) Reactions to cement factory dust contamination by Pinus halepensis needles. Environ Exp Bot 41:155–166CrossRefGoogle Scholar
  8. Barboni T, Luro F, Chiaramonti N, Desjobert J-M, Muselli A, Costa J (2009) Volatile composition of hybrids Citrus juices by headspace solid-phase micro extraction/gas chromatography/mass spectrometry. Food Chem 116:382–390. doi: 10.1016/j.foodchem.2009.02.031 CrossRefGoogle Scholar
  9. Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566PubMedCrossRefGoogle Scholar
  10. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi: 10.1093/aob/mcf118 PubMedCrossRefGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  12. Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect–plant interactions. Environ Pollut 156:1–10. doi: 10.1016/j.envpol.2007.12.026 PubMedCrossRefGoogle Scholar
  13. Bylaitė E, Venskutonis R, Roozen JP, Posthumus MA (2000) Composition of essential oil of costmary [Balsamita major (L.) Desf.] at different growth phases. J Agric Food Chem 48:2409–2414PubMedCrossRefGoogle Scholar
  14. Chance B, Maehly C (1955) Assay of catalase and peroxidases. Method Enzymol 2:764–775CrossRefGoogle Scholar
  15. Cobb FWJR, Zavarin E, Bergot J (1972) Effect of air pollution on the volatile oil from leaves of Pinus ponderosa. Phytochemistry 11:1815–1818CrossRefGoogle Scholar
  16. Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93–99. doi: 10.1016/j.envexpbot.2005.06.019 CrossRefGoogle Scholar
  17. Dvaranauskaitė A, Venskutonis PR, Raynaud C, Talou T, Viškelis P, Sasnauskas A (2009) Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chem 114:671–679CrossRefGoogle Scholar
  18. Elvira S, Alonso R, Castillo FJ, Gimeno BS (1998) On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytol 138:419–432CrossRefGoogle Scholar
  19. Erdal S, Demirtas A (2010) Effects of cement flue dust from a cement factory on stress parameters and diversity of aquatic plants. Toxicol Ind Health 26:339–343PubMedCrossRefGoogle Scholar
  20. Farmer AM (1993) The effects of dust on vegetation—a review. Environ Pollut 79:63–75PubMedCrossRefGoogle Scholar
  21. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011CrossRefGoogle Scholar
  22. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  23. Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488. doi: 10.1016/j.envpol.2006.08.033 PubMedCrossRefGoogle Scholar
  24. Heath RI, Paker L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198PubMedCrossRefGoogle Scholar
  25. Hosni K, Zahed N, Chrif R, Abid I, Medfei W, Kallel M, Ben Brahim N, Sebei H (2010) Composition of peel essential oils from four selected Tunisian Citrus species: evidence for the genotypic influence. Food Chem 123:1098–1104. doi: 10.1016/j.foodchem.2010.05.068 CrossRefGoogle Scholar
  26. Inclán R, Gimeno BS, Dizengremel P, Sanchez M (2005) Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environ Pollut 137:517–524. doi: 10.1016/j.envpol.2005.01.037 PubMedCrossRefGoogle Scholar
  27. Judzentiene A, Stikliene A, Kupcinskiene E (2007) Changes in the essential oil composition in the needles of Scots pine (Pinus sylvestris L.) under anthropogenic stress. Sci World J 7:141–150CrossRefGoogle Scholar
  28. Kask R, Ots K, Mandre M, Pikk J (2008) Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees 22:815–823CrossRefGoogle Scholar
  29. Kozlowski TT (1980) Impacts of air pollution on forest ecosystem. Biosience 30:88–93CrossRefGoogle Scholar
  30. Kupcinskiene E, Huttunen S (2005) Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania. Environ Pollut 137:610–618. doi: 10.1016/j.envpol.2005.01.047 PubMedCrossRefGoogle Scholar
  31. Kupcinskiene E, Stikliene A, Judzentiene A (2008) The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ Pollut 155:481–491. doi: 10.1016/j.envpol.2008.02.001 PubMedCrossRefGoogle Scholar
  32. Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166. doi: 10.1016/j.tplants.2009.12.006 PubMedCrossRefGoogle Scholar
  33. Lu L, Zhu LZ (2009) Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. Environ Pollut 6:1794–1799. doi: 10.1016/j.envpol.2009.01.028 CrossRefGoogle Scholar
  34. Lukjanova A, Mandre M (2010) Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut 206:13–22CrossRefGoogle Scholar
  35. Mackie A, Boilard S, Walsh ME, Lake CB (2010) Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. J Hazard Mater 173:283–291. doi: 10.1016/j.jhazmat.2009.08.081 PubMedCrossRefGoogle Scholar
  36. Mandre M, Klõšeiko J, Ots K, Tuulmets L (1999) Changes in phytomass and nutrient partitioning in young conifers in extreme alkaline growth conditions. Environ Pollut 105:209–220CrossRefGoogle Scholar
  37. Mandre M, Kask R, Pikk J, Ots K (2008) Assessment of growth and stemwood quality of Scots pine on territory influenced by alkaline industrial dust. Environ Monit Assess 138:51–63PubMedCrossRefGoogle Scholar
  38. Markkola AM, Tarvainen O, Ahonen-Jonnarth U, Strömmer R (2002) Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings. Environ Pollut 116:273–278CrossRefGoogle Scholar
  39. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610PubMedCrossRefGoogle Scholar
  40. Mutlu S, Atici O, Kaya Y (2009) Effect of cement dust on diversity and antioxidant enzyme activities of plants growing around a cement factory. Fresenius Environ Bull 18:1823–1827Google Scholar
  41. Nanos GD, Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res 17:212–214CrossRefGoogle Scholar
  42. Paolini J, Costa J, Bernardini A-F (2005) Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J Chromatogr A 1076:170–178PubMedCrossRefGoogle Scholar
  43. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144. doi: 10.1016/j.tplants.2009.12.005 PubMedCrossRefGoogle Scholar
  44. Pierce GJ (1909) The possible effect of cement dust on plants. Science 30:652–654CrossRefGoogle Scholar
  45. Räisänen T, Ryyppö A, Kellomäki S (2008a) Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmos Environ 42:4160–4171. doi: 10.1016/j.atmosenv.2008.01.023 CrossRefGoogle Scholar
  46. Räisänen T, Ryyppö A, Julkunen-Tiitto R, Kellomäki S (2008b) Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees 22:121–135. doi: 10.1007/s00468-007-0175-6 CrossRefGoogle Scholar
  47. RNEE (2001) Rapport National de l’Etat de l’EnvironnementGoogle Scholar
  48. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259PubMedCrossRefGoogle Scholar
  49. Sallas L, Luomala E-M, Utriainen J, Kainulainen P, Holopainen JK (2003) Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol 23:97–108PubMedCrossRefGoogle Scholar
  50. Scalet M, Federico R, Guido MC, Manes F (1995) Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ Exp Bot 35:417–425CrossRefGoogle Scholar
  51. Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CN, Schnitzler JP, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401CrossRefGoogle Scholar
  52. Schützendübel A, Polle A (2002) Plant responses to abiotic stress: heavy metals induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365CrossRefGoogle Scholar
  53. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol 127:887–892PubMedCrossRefGoogle Scholar
  54. Shpak SI, Lamotkin SA, Lamotkin AI (2007) Chemical composition of Pinus sylvestris essential oil from contaminated areas. Chem Nat Compd 43:55–58CrossRefGoogle Scholar
  55. Snow MD, Bard RR, Olszyk DM, Minster LM, Hager AN, Tingey DT (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol Plant 117:352–358PubMedCrossRefGoogle Scholar
  56. Taylor HJ, Ashmore MR, Bell JNB (1986) Air pollution injury to vegetation. Imperial College Centre for Environmental Technology, LondonGoogle Scholar
  57. Wannaz ED, Zygadlo JA, Pignata ML (2003) Air pollutants effect on monoterpenes composition and foliar chemical parameters in Schinus areira L. Sci Total Environ 305:177–193PubMedCrossRefGoogle Scholar
  58. Wellburn FAM, Ka-Keung L, Milling PMK, Wellburn AR (1996) Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill.). J Exp Bot 47:1361–1367CrossRefGoogle Scholar
  59. Wu CA, Lowry DB, Nutter LI, Willis JH (2010) Natural variation for drought-response traits in the Mimulus guttatus species complex. Oecologia 162:23–33PubMedCrossRefGoogle Scholar
  60. Yilmaz S, Zengin M (2004) Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Int 29:1041–1047PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2012

Authors and Affiliations

  1. 1.Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-chimique (INRAP)Technopôle de Sidi ThabetArianaTunisia

Personalised recommendations