Advertisement

Acta Physiologiae Plantarum

, Volume 34, Issue 3, pp 1153–1164 | Cite as

Do plant chloroplasts contain histidine kinases?

  • Eugene A. Lysenko
  • Natallia L. Pshybytko
  • Natalia N. Karavaiko
  • Ludmila A. Yakovleva
  • Galina V. Novikova
  • Olga N. Kulaeva
  • Victor V. Kusnetsov
Original Paper
  • 130 Downloads

Abstract

Plastids are evolutionary descendants of cyanobacteria and retain many proteins of cyanobacterial origin including histidine kinases (HKs). Histidine kinases form a major group of protein kinases in cyanobacteria but a minor group in angiosperms; no HK has been detected in plant plastids so far. This raises the question: have higher plant plastids retained some cyanobacterial His/Asp regulatory systems or the latter have been replaced with Ser/Thr or Tyr protein kinases more typical for eukaryotes? To answer this question H1 antiserum against conservative phospho-acceptor motif of HKs was raised and applied for the analysis of different chloroplast fractions. In maize, three polypeptides with apparent molecular masses about 26, 27.5, and 28 kDa were revealed in thylakoid membranes. The results of in organello phosphorylation suggest that these proteins may be His-phosphorylated. Polypeptides with similar molecular masses were revealed in various mono- and dicotyledonous plants. Bioinformatic analysis demonstrated that in angiosperms these polypeptides might result from alternative transcription initiation and/or alternative processing of mRNAs of genes encoding well-known HKs. Besides, the genome of the moss Physcomitrella patens contains much more genes that could code for plastid HKs. The data obtained let us suppose that plastids of contemporary plants have HK(s) that could be involved in regulation of plastid gene expression.

Keywords

Histidine kinase Chloroplasts Terrestrial plants Evolution 

Abbreviations

CDS

Coding DNA sequence

CSK

Chloroplast sensor kinase

HK

Histidine kinase

LHCII

Light-harvesting complex of PSII

PSI

Photosystem I

PSII

Photosystem II

RR

Response regulator

STK

Ser/Thr kinase

Notes

Acknowledgments

The authors thank Dr. N.S. Egorova for providing synthetic H1 peptide and its BSA-conjugated form and Dr. A.M. Murygina for helping in manuscript preparation. This work was partially supported by the Russian Foundation for Basic Research (10-04-90052), the Belarusian Republican Foundation for Fundamental Research (Б10P-171).

Supplementary material

11738_2011_912_MOESM1_ESM.tif (1.6 mb)
Supplementary material 1 (TIFF 1636 kb)
11738_2011_912_MOESM2_ESM.tif (297 kb)
Supplementary material 2 (TIFF 297 kb)
11738_2011_912_MOESM3_ESM.pdf (27 kb)
Supplementary material 3 (PDF 27 kb)
11738_2011_912_MOESM4_ESM.pdf (13 kb)
Supplementary material 4 (PDF 13 kb)

References

  1. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Asakura Y, Hagino T, Ohta Y, Aoki K, Yonekura-Sakakibara K, Deji A, Yamaya T, Sugiyama T, Sakakibara H (2003) Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: Implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol Biol 52:331–341PubMedCrossRefGoogle Scholar
  4. Ashby MK, Houmard J (2006) Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 70:472–509PubMedCrossRefGoogle Scholar
  5. Bonen L (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 7:40–46PubMedGoogle Scholar
  6. Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34PubMedCrossRefGoogle Scholar
  7. Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–447PubMedCrossRefGoogle Scholar
  8. Duplessis MR, Karol KG, Adman ET, Choi LYS, Jacobs MA, Cattolico RA (2007) Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae). BMC Evol Biol 7:70. doi: 10.1186/1471-2148-7-70 PubMedCrossRefGoogle Scholar
  9. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257PubMedCrossRefGoogle Scholar
  10. Ford RC, Evans MCW (1983) Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity. FEBS Lett 160:159–164CrossRefGoogle Scholar
  11. Forsberg J, Rosenquist M, Fraysse L, Allen JF (2001) Redox signaling in chloroplasts and mitochondria: genomic and biochemical evidence for two-component regulatory systems in bioenergetic organelles. Biochem Soc Trans 29:403–407PubMedCrossRefGoogle Scholar
  12. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal trancduction systems. FEMS Microbiol Lett 203:11–21PubMedCrossRefGoogle Scholar
  13. Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515PubMedCrossRefGoogle Scholar
  14. Kawasaki T, Okumura S, Kishimoto N, Shimada H, Higo K, Ichikawa N (1999) RNA maturation of the rice SPK gene may involve trans-splicing. Plant J 18:625–632PubMedCrossRefGoogle Scholar
  15. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginski S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362PubMedCrossRefGoogle Scholar
  16. Kodama Y, Sano H (2006) Evolution of a basic helix-loop-helix protein from a transcriptional repressor to a plastid-resident regulatory factor: involvement in hypersensitive cell death in tobacco plants. J Biol Chem 281:35369–35380PubMedCrossRefGoogle Scholar
  17. Kodama Y, Sano H (2007) Functional diversification of a basic helix-loop-helix protein due to alternative transcription during generation of amphidiploidy in tobacco plants. Biochem J 403:493–499PubMedCrossRefGoogle Scholar
  18. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Mol Biol 42:313–349CrossRefGoogle Scholar
  19. Krupa A, Anamika, Srinivasan N (2006) Genome-wide comparative analyses of domain organisztion of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 380:1–13Google Scholar
  20. Kumar BV, Lakshmi MV, Atkinson JP (1985) Fast and efficient method for detection and estimation of proteins. Biochem Biophys Res Commun 131:883–891PubMedCrossRefGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  22. Lichtenthaler HL (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  23. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedCrossRefGoogle Scholar
  24. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologischen Centralblatte 25:593-604 (English translation in: Martin W, Kowallik KV (1999) Annotated english translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der Chromatophoren im Pflanzenreiche“. Eur J Phycol 34:287-295)Google Scholar
  25. Mount SM, Chang C (2002) Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol 130:10–14PubMedCrossRefGoogle Scholar
  26. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741PubMedCrossRefGoogle Scholar
  27. Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with arabidopsis. Plant Physiol 142:380–397PubMedCrossRefGoogle Scholar
  28. Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, van der Giezen M, Rogers MB, Allen JF (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105:10061–10066PubMedCrossRefGoogle Scholar
  29. Schaller GE, Doi K, Hwang I, Kieber JJ, Khurana JP, Kurata N, Mizuno T, Pareek A, Shiu S-H, Wu P, Yip WK (2007) Nomenclature for two-component signaling elements in rice. Plant Physiol 143:555–557PubMedCrossRefGoogle Scholar
  30. Schliebner I, Pribil M, Zühlke J, Dietzmann A, Leister D (2008) A survey of chloroplast protein kinases and phosphatases in Arabidopsis thaliana. Curr Genomics 9:184–190PubMedCrossRefGoogle Scholar
  31. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedCrossRefGoogle Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  33. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  34. Weber P, Fulgosi H, Piven I, Muller L, Krupinska K, Duong VH, Herrmann RG, Sokolenko A (2006) TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. J Mol Biol 357:535–549PubMedCrossRefGoogle Scholar
  35. Wei Y-F, Matthews HR (1991) Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol 200:388–414PubMedCrossRefGoogle Scholar
  36. Yeh K-C, Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95:13976–13981PubMedCrossRefGoogle Scholar
  37. Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2003) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661CrossRefGoogle Scholar
  38. Zhang X, Zhao F, Guan X, Yang Y, Liang C, Qin S (2007) Genome-wide survey of putative serine/threonine protein kinases in cyanobacteria. BMC Genomics 8:395. doi: 10.1186/1471-2164-8-395 PubMedCrossRefGoogle Scholar
  39. Zorina A, Stepanchenko N, Novikova GV, Sinetova M, Panichkin VB, Moshkov IE, Zinchenko VV, Shestakov SV, Suzuki I, Murata N, Los DA (2011) Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis. DNA Res 18:137–151PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2011

Authors and Affiliations

  • Eugene A. Lysenko
    • 1
  • Natallia L. Pshybytko
    • 2
  • Natalia N. Karavaiko
    • 1
  • Ludmila A. Yakovleva
    • 1
  • Galina V. Novikova
    • 1
  • Olga N. Kulaeva
    • 1
  • Victor V. Kusnetsov
    • 1
  1. 1.Institute of Plant Physiology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Biophysics and Cell Engineering, National Academy of BelarusMinskBelarus

Personalised recommendations