Advertisement

Acta Physiologiae Plantarum

, Volume 34, Issue 3, pp 1093–1100 | Cite as

Increased miroestrol, deoxymiroestrol and isoflavonoid accumulation in callus and cell suspension cultures of Pueraria candollei var. mirifica

  • Latiporn Udomsuk
  • Thaweesak Juengwattanatrakul
  • Kanokwan Jarukamjorn
  • Waraporn PutalunEmail author
Original Paper

Abstract

Miroestrol and deoxymiroestrol are highly active phytoestrogens derived from the tuberous roots of Pueraria candollei var. mirifica. To date, there have been no reports regarding the production of miroestrol and deoxymiroestrol in in vitro cell culture. In this study, callus and cell suspension cultures were established for the purpose of investigating miroestrol and deoxymiroestrol content in P. candollei var. mirifica cells. Stem-derived callus cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg l−1 thidiazuron (TDZ), 0.5 mg l−1 naphthaleneacetic acid (NAA), and 1.0 mg l−1 benzyladenine (BA) provided optimal conditions for the accumulation of deoxymiroestrol and total isoflavonoids. The calli produced 184.83 ± 20.09 μg g−1 dry weight of total chromene and 20.72 ± 2.38 mg g−1 dry weight of total isoflavonoid. This is the first report to suggest that callus culture is a suitable alternative method for producing miroestrol and deoxymiroestrol. Carbon sources were evaluated for the cell suspension cultures of P. candollei var. mirifica. Sucrose provided optimal conditions for biomass production, whereas fructose was the most suitable carbon source for deoxymiroestrol and isoflavonoid production. The information from our study can be employed for enhancing the production of miroestrol, deoxymiroestrol, and total isoflavonoids using in vitro cell culture of P. candollei var. mirifica.

Keywords

Deoxymiroestrol Miroestrol Isoflavonoid Callus culture Cell suspension culture 

Abbreviations

BA

6-Benzyladenine

GPBS

0.2% Gelatin in phosphate-buffered saline

NAA

α-Naphthaleneacetic acid

PAbs

Polyclonal antibodies

TDZ

Thidiazuron

TPBS

0.05% Tween 20 in phosphate-buffered saline

Wt

Weight

Notes

Acknowledgments

This work was supported by a grant from the Office of the Higher Education Commission. Latiporn Udomsuk (CHE 510636) received a CHE-Ph.D. scholarship. The Thailand Research Fund (RSA5280012) is gratefully acknowledged. We also thank Dr. Chaiyo Chaichantipyuth, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, for providing purified miroestrol and deoxymiroestrol.

Supplementary material

11738_2011_906_MOESM1_ESM.pdf (284 kb)
Supplementary material 1 (PDF 284 kb)

References

  1. Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  2. Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Org Cult 101:119–126CrossRefGoogle Scholar
  3. Cain JC (1960) Miroestrol: an oestrogen from the plant Pueraria mirifica. Nature 188:774–777PubMedCrossRefGoogle Scholar
  4. Chansakaow S, Ishikawa T, Seki H, Sekine K, Okada M, Chaichantipyuth C (2000a) Identification of deoxymiroestrol as the actual rejuvenating principle of “Kwao Keur”, Pueraria mirifica. The known miroestrol may be an artifact. J Nat Prod 63:173–175PubMedCrossRefGoogle Scholar
  5. Chansakaow S, Ishikawa T, Seki H, Sekine K, Okada M, Higuchi M, Kudo M, Chaichantipyuth C (2000b) Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med 66:572–575PubMedCrossRefGoogle Scholar
  6. Cherdshewasart W, Subtang S, Dahlan W (2007) Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pharm Biomed Anal 43:428–434PubMedCrossRefGoogle Scholar
  7. Davick PM (2009) Medicinal natural products: a biosynthetic approach. Wiley, UKGoogle Scholar
  8. Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624PubMedCrossRefGoogle Scholar
  9. Ferri M, Righetti L, Tassoni A (2011) Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. J Plant Physiol 168:189–195PubMedCrossRefGoogle Scholar
  10. Gueven A, Knorr D (2011) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103:237–243CrossRefGoogle Scholar
  11. Korsangruang S, Chintapakorn Y, Prathanturarug S, Soonthornchareonnon N, Saralamp P (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333–342CrossRefGoogle Scholar
  12. Malaivijitnond S, Kiatthaipipat K, Cherdshewasart W, Watanabe G, Taya K (2004) Different effects of Pueraria mirifica, a herb containing phytoestrogens, on LH and FSH secretion in gonadectomized female and male rats. J Pharm Sci 96:428–435CrossRefGoogle Scholar
  13. Nagella P, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol 101:6735–6739PubMedCrossRefGoogle Scholar
  14. Pongkitwitoon B, Sakamoto S, Tanaka H, Tsuchihashi R, Kinjo J, Morimoto S, Putalun W (2010) Enzyme-linked immunosorbent assay for total isoflavonoids in Pueraria candollei using anti-puerarin and anti-daidzin polyclonal antibodies. Planta Med 76:831–836PubMedCrossRefGoogle Scholar
  15. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709CrossRefGoogle Scholar
  16. Sengupta J, Jha S, Sen S (1988) Keryotype Stability in long-term callus derived plants of Crepis tectorum L. Biologia Plantarum (PRAHA) 30(4):247–251CrossRefGoogle Scholar
  17. Shishkova S, Garc-Mendoza E, Castillo-D V, Moreno NE, Arellano J, Dubrovsky J (2007) Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae. Plant Cell Rep 26:547–557PubMedCrossRefGoogle Scholar
  18. Tassoni A, Fornal S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905PubMedCrossRefGoogle Scholar
  19. Tempfer CB, Bentz EK, Leodolter S, Tscherne G, Reuss F, Cross HS, Huber JC (2007) Phytoestrogens in clinical practice. Fertil Steril 87(6):1243–1249PubMedCrossRefGoogle Scholar
  20. Trisomboon H, Malaivijitnond S, Watanabe G, Taya K (2005) Ovulation block by Pueraria mirifica: a study of its endocrinological effect in female monkeys. Endocrine 26(1):33–40PubMedCrossRefGoogle Scholar
  21. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2009a) Production of isoflavonoids in callus cultures of Pueraria candollei var. mirifica. Z Naturforsch 64:239–243Google Scholar
  22. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2009b) Isoflavonoid production in hairy roots culture of Pueraria candollei. Z Naturforsch 64:687–691Google Scholar
  23. Udomsuk L, Churikawit K, Putalun W, Jarukamjorn K (2010) Impact of Pueraria candollei root cultures on cytochrome P450 2B9 enzyme and lipid peroxidation in mice. J Health Sci 56:182–187CrossRefGoogle Scholar
  24. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotech Lett 33(2):369–374CrossRefGoogle Scholar
  25. Wang X (2011) Structure, function, and engineering of enzymes in isoflavoniod biosynthesis. Funt Integr Genomics 11:13–22CrossRefGoogle Scholar
  26. Wang Y, Weathers PJ (2007) Sugars proportionately affect artemisinin production. Plant Cell Rep 26:1073–1081PubMedCrossRefGoogle Scholar
  27. Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agr 86:147–190CrossRefGoogle Scholar
  28. Yusakul G, Putalun W, Udomsin O, Juengwatanatrakul T, Chaichantipyuth C (2011) Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia 82:203–207PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2011

Authors and Affiliations

  • Latiporn Udomsuk
    • 1
    • 2
  • Thaweesak Juengwattanatrakul
    • 3
  • Kanokwan Jarukamjorn
    • 1
    • 2
  • Waraporn Putalun
    • 1
    • 2
    Email author
  1. 1.Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  2. 2.Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB)National Research University-Khon Kaen UniversityKhon KaenThailand
  3. 3.Faculty of Pharmaceutical SciencesUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations