Advertisement

Acta Physiologiae Plantarum

, Volume 34, Issue 1, pp 129–137 | Cite as

Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.)

  • Jamel Harrathi
  • Karim HosniEmail author
  • Najoua Karray-Bouraoui
  • Houneida Attia
  • Brahim Marzouk
  • Christian Magné
  • Mokhtar Lachaâl
Original Paper

Abstract

This study examined the influence of salt treatment on the growth parameters (fresh and dry weights), the mineral content (K+ and Na+), total lipid contents, fatty acid composition, yields and chemical composition of the essential oil of safflower (Carthamus tinctorius L.) grown in hydroponics for 2 weeks. Results showed that the application of 50 mM NaCl reduced the fresh weight of aerial parts (shoots and leaves) while it enhanced those of the roots. The reduction of dry weight was found to be more pronounced in the aerial parts. Salt treatment increased markedly the concentrations of Na+ in both plant parts while it reduced those of K+ which resulted in a sharp reduction of K+/Na+ ratio. In response to salt treatment, total lipids contents decreased in both plant parts and great qualitative changes in the fatty acids profiles were observed. Whatever the plant parts analysed, a redirection of the lipidic metabolism towards synthesis of unsaturated fatty acids as revealed by the increase of double bond index and linoleic desaturation ratio was pointed out. The increased unsaturation index was found to be more important in roots than in aerial parts. Such treatment also reduced the essential oil yields and induced marked quantitative changes in the chemical composition of the essential oils from both plant parts. Of all the identified components, oxygenated components display a prominent salt-induced synthesis and/or accumulation in both roots and aerial parts.

Keywords

Carthamus tinctorius Salinity Growth Mineral content Fatty acids Essential oil 

Notes

Acknowledgments

The authors wish to thank Asma Allaoui (Laboratoire des Sciences de l’Environnement, Ecole Nationale d’Ingénieurs de Sfax, Tunisia) for the GC–MS analysis.

References

  1. Adams R (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, Carol StreamGoogle Scholar
  2. Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker. New York, pp 285–313Google Scholar
  3. Ashraf M, Harris PGC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi: 10.1016/j.plantsci.2003.10.024 CrossRefGoogle Scholar
  4. Ashrafi E, Razmjoo K ((2010)) Effect of irrigation regimes on oil content and composition of Safflower (Carthamus tinctorius L.) cultivars. J Am Oil Chem Soc 87:499–506. doi: 10.1007/s11746-009-1527-8 CrossRefGoogle Scholar
  5. Baatour O, Kaddour R, Aidi Wannes W, Lachaâl M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32:45–51. doi: 10.1007/s11738-009-0374-4 CrossRefGoogle Scholar
  6. Bassil ES, Kaffka SR (2002) Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation I. Consumptive water use. Agr Water Manage 54:67–80CrossRefGoogle Scholar
  7. Ben Taârit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956. doi: 10.1016/j.foodchem.2009.07.055 CrossRefGoogle Scholar
  8. Ben Taârit M, Msaada K, Hosni K, Marzouk B (2011) Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33:153–162. doi: 10.1007/s11738-010-0532-8 CrossRefGoogle Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  10. Bourgou S, Bettaieb I, Saidani M, Marzouk B (2010) Fatty acids, essential oil and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agric Food Chem 58:12399–12406. doi: 10.1021/jf103415q CrossRefGoogle Scholar
  11. Bowles VG, Mayerhofer R, Davis C, Good AG, Hall JC (2010) A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Syst Evol 287:85–97. doi: 10.1007/s00606-010-0292-3 CrossRefGoogle Scholar
  12. Brady CJ, Gibson TS, Barlow EWR, Speirs J, WynJones RG (1984) Salt tolerance in plants. I. Ions compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578Google Scholar
  13. Cecchi G, Biasini S, Castano J (1985) M′ethanolyse rapide des huiles en solvents. Note de laboratoire. Rev Franc Corps Gras 4:163–164Google Scholar
  14. Chartzoulakis A, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic 95:39–50CrossRefGoogle Scholar
  15. Çiçek N, Çakirlar H (2008) Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya Bean (Glycine max LMerr.) cultivars. J Agric Crop Sci 194:34–46. doi: 10.1111/j.1439-037X.2007.00288.x CrossRefGoogle Scholar
  16. Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954CrossRefGoogle Scholar
  17. da Silva EC, Nogueira RJMC, Araujo FP, Melo NF, de Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi: 10.1016/j.envexpbot.2007.11.010 CrossRefGoogle Scholar
  18. Dajue L, Mandel H–H (1996) Safflower, Carthamus tinctorius L. In: Promoting the conservation and use of underutilized and neglected crops, vol 7. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  19. Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101. doi: 10.1007/s11738-009-0384-2 CrossRefGoogle Scholar
  20. De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76CrossRefGoogle Scholar
  21. Gadallah MAA (1996) Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regul 20:225–236CrossRefGoogle Scholar
  22. Gao WY, Fan L, Paek KY (2000) Yellow and red pigment production by cell cultures of Carthamus tinctorius in a bioreactor. Plant Cell Tissue Organ Culture 60:95–100CrossRefGoogle Scholar
  23. Gecgel U, Demirci M, Esendal E, Tasan M (2007) Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.). J Am Oil Chem Soc 84:47–54. doi: 10.1007/s11746-006-1007-3 CrossRefGoogle Scholar
  24. Gignon A, Matos A-R, Aferay D, Zuily-Fodil Y, Pham-Thi A-T (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 94:345–351. doi: 10.1093/aob/mch150 CrossRefGoogle Scholar
  25. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  26. Hiramatsu M, Takahashi T, Komatsu M, Kido T, Kasahara Y (2009) Antioxidant and neuroprotective activities of mogami-benibana (Safflower, Carthamus tinctorius Linne). Neurochem Res 34:795–805. doi: 10.1007/s11064-008-9884-5 PubMedCrossRefGoogle Scholar
  27. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ 347. Calif Agric Exp Sta Berkley, CA, p 32Google Scholar
  28. Irving DW, Shannon MC, Breda VA, Mackey BE (1998) Salinity effects on yield and oil quality of high linolate and high-oleate cultivars of Safflower (Carthamus tinctorius L). J Agric Food Chem 36:37–42CrossRefGoogle Scholar
  29. Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaâl M (2011) Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant. doi: 10.1007/s11738-010-0679-3 Google Scholar
  30. Khadhri A, Neffati M, Smiti S, Nogueira JMF, Araújo MEM (2011) Influence of salt stress on essential oil yield and composition of lemon grass (Cymbopogon schoenanthus L. Spreng. ssp. Laniger (Hook) Maire et Weil). Nat Prod Res 25:108–117. doi: 10.1080/14786419.2010.505169 PubMedCrossRefGoogle Scholar
  31. Kim H-Y, Kim C–S, Jhon G-J, Moon I–S, Choi S–H, Cho K–S, Chai J-K, Kim C–K (2002) The effect of safflower seed extract on periodontal healing of 1-wall intrabony defects in beagle dogs. J Periodontol 73:1457–1466PubMedCrossRefGoogle Scholar
  32. Lee JY, Chang EJ, Kim HJ, Park JH, Choi SW (2002) Antioxidative flavonoids from leaves of Carthamus tinctorius. Arch Pharm Res 25:313–319PubMedCrossRefGoogle Scholar
  33. Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Env Exp Bot 68:66–74. doi: 10.1016/j.envexpbot.2009.10.004 CrossRefGoogle Scholar
  34. López-Pérez L, MdC Martínez-Ballesta, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70:492–500. doi: 10.1016/j.phytochem.2009.01.014 PubMedCrossRefGoogle Scholar
  35. Malkit A, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129:1320–1329CrossRefGoogle Scholar
  36. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280. doi: 10.1016/j.pbi.2006.03.002 PubMedCrossRefGoogle Scholar
  37. Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269. doi: 10.1007/s11746-010-1615-9 CrossRefGoogle Scholar
  38. Naffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142. doi: 10.1016/j.indcrop.2008.02.005 CrossRefGoogle Scholar
  39. Nogala-Kalucka M, Rudzinska M, Zadernowski R, Siger A, Krzyzostaniak I (2010) Phytochemical content and antioxidant properties of deeds of unconventional oil Plants. J Am Oil Chem Soc 87:1481–1487. doi: 10.1007/s11746-010-1640-8 CrossRefGoogle Scholar
  40. Novruzov E, Shamsizade L (1998) Anthocyans of Carthamus species. Chem Nat Comp 34:514–515CrossRefGoogle Scholar
  41. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi: 10.1016/j.ecoenv.2004.06.010 PubMedCrossRefGoogle Scholar
  42. Pleines S, Friedt W (1988) Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci Technol 90:167–171Google Scholar
  43. Rammal H, Younos C, Bouayed J, Chakou A, Necerbey N, Soulimani R (2009) Aperçu ethnobotanique et phytopharmacologique sur Carthamus tinctorius L. Phytothérapie 7:28–30. doi: 10.1007/s10298-008-0361-8 CrossRefGoogle Scholar
  44. Sehgal D, Raina SN, Devarumatha RM, Sasanuma T, Sasakuma T (2009) Nuclear DNA assay in solving issues related to ancestry of the domesticated diploid safflower (Carthamus tinctorius L.) and the polyploid (Carthamus) taxa, and phylogenetic and genomic relationships in the genus Carthamus L. (Asteraceae). Mol Phylogenet Evol 53:631–644PubMedCrossRefGoogle Scholar
  45. Singh-Sangwan N, Farooqi AHA, Sangwan RS (2004) Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol 128:173–179CrossRefGoogle Scholar
  46. Stumpf PK (1975) Recent advances in the chemistry and biochemistry of’plant lipids. In: Galhard T, Mercer MI (eds) Academic Press, London, p 95.Google Scholar
  47. Viégas RA, Queiroz JE, Silva LMM, Silveira JAG, Rocha IMA, Viégas PRA (2003) Plant growth, accumulation and solute partitioning of four forest species under salt stress. Rev Bras Eng Agric Amb 7:258–262CrossRefGoogle Scholar
  48. Yu Y, Yang B, Zhou T, Zhang H, Shao L, Duan G (2007) Rapid determination of volatile constituents in safflower by microwave distillation and simultaneous solid-phase microextraction coupled with gas chromatography-mass spectrometry. Ann Chim 97:1075–1084PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2011

Authors and Affiliations

  • Jamel Harrathi
    • 1
  • Karim Hosni
    • 2
    Email author
  • Najoua Karray-Bouraoui
    • 1
  • Houneida Attia
    • 1
  • Brahim Marzouk
    • 3
  • Christian Magné
    • 4
  • Mokhtar Lachaâl
    • 1
  1. 1.Unité de Physiologie et de Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de TunisCampus Universitaire el ManarTunisTunisia
  2. 2.Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico-chimique (INRAP)Sidi ThabetTunisia
  3. 3.Laboratoire des Substances BioactivesCentre de Biotechnologie de Borj Cédria (CBBC)Hammam-LifTunisia
  4. 4.Laboratoire d’Ecophysiologie et de Biotechnologie des Halophytes et Algues Marines (LEBHAM, EA 3877)IUEM, Université de Bretagne OccidentalePlouzanéFrance

Personalised recommendations