Acta Physiologiae Plantarum

, Volume 33, Issue 1, pp 25–34 | Cite as

Natural antioxidants of plant origin against ozone damage of sensitive crops

  • Nataliya P. DidykEmail author
  • Oleg B. Blum


The increasing concentrations of ambient ozone observed during recent decades in many industrial and rural regions of the world present hazard for vegetation and human health. The problem of protection of sensitive vegetation from ozone damage could be ameliorated by replacement of sensitive biotypes with more tolerant ones as well as by application of chemical protectants. However, application of synthetic protectants will pollute the environment and agricultural production and may also have dose-dependent toxicity to vegetation. Therefore, it is urgent to develop alternative, environmentally antiozonants, for example, compounds based on natural plant antioxidants. In this article the literature has been reviewed in search of works relating to the potential of natural plant antioxidants that might serve to protect sensitive vegetation from ozone damage. The following groups of antioxidants have been discussed: (i) ascorbic acid and its derivatives, (ii) phytohormones, (iii) flavonoids, and (iv) polyamines. The physiological aspects of their protective effect on ozone-sensitive crops have been considered. Possible phytotoxicity resulting from their application in the field has been discussed. The issues needing further studies have been outlined.


Ambient ozone phytotoxicity Atmosphere pollution Ozone stress Crop protection Natural antioxidants 



This work was supported by the Science & Technology Center in Ukraine (project N 3894) and by “M.M. Gryshko” National Botanical Garden of the National Academy of Sciences of Ukraine. The authors extend their thanks to Prof. Reginald Noble (Bowling Green University, USA) for helpful editorial suggestions prior to finalizing our manuscript.


  1. Adedipe NO, Ormrod DP (1972) Hormonal regulation of ozone phytotoxicity in Raphanus sativus. Zeitschrift fur Pflanzenphysiologie 68:254–258Google Scholar
  2. Afzal IS, Maqsood A, Basra N, Farooq AM (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestavum L.). Caderno de Pesquisa Ser Bio Santa Cruz do Sul 17(1):95–109Google Scholar
  3. Archambault D, Slaski DJ, Li JJ (2000) Ozone protection in plants. The potential use of chemical protectants to measure oxidant damage in Alberta crops. Report prepared for the Air Research Users Group. Alberta Environment, Edmonton, AlbertaGoogle Scholar
  4. Ayub N, Bano A, Ramzan S, Usman M (2000) Effect of VAM on drought tolerance and growth of plant in comparison with the effect of growth regulators. Pakistan J Biol Sci 3(6):957–959. doi: 10.3923/pjbs.2000.957.959 CrossRefGoogle Scholar
  5. Bais HP, Walker TS, Kennan AJ, Stermitz FR, Vivanco JM (2003) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51:897–901. doi: 10.1021/jf020978a CrossRefPubMedGoogle Scholar
  6. Benton J, Fuhrer J, Gimeno BS, Skarby L, Palmer-Brown D, Ball G, Roadknight C, Mills G (2000) An international cooperation programme indicates the wide spread occurrence of ozone injury on crops. Agric Ecosyst Environ 78:19–30. doi: 10.1016/S0167-8809(99)00107-3 CrossRefGoogle Scholar
  7. Blum O, Didyk N (2006) Ambient ozone phytodetection with sensitive clover (Trifolium subterraneum L. cv. Geraldton) in Ukraine. In: Arapis G et al (eds) Ecological risk assessment and multiple stressors. Ecotoxicology. Springer, Netherlands, pp 279–289Google Scholar
  8. Blum O, Didyk N (2007) Study of ambient ozone phytotoxicity in Ukraine and ozone protective effect of some antioxidants. J Hazard Mater 149(3):598–602. doi: 10.1016/j.jhazmat.2007.06.112 CrossRefPubMedGoogle Scholar
  9. Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28(6):1585–1595. doi: 10.1016/S0031-9422(00)97805-1 Google Scholar
  10. Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114(3):387–394. doi: 10.1034/j.1399-3054.2002.1140308.x CrossRefPubMedGoogle Scholar
  11. Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut 143(3):427–434. doi: 10.1016/j.envpol.2005.12.009 CrossRefPubMedGoogle Scholar
  12. Chen Z, Gallie D (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689. doi: 10.1104/pp.105.062000 CrossRefPubMedGoogle Scholar
  13. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone pathogens, and the onset of senescence. Plant Cell Environ 27:959–970. doi: 10.1111/j.1365-3040.2004.01203.x CrossRefGoogle Scholar
  14. Cross CE, Valacchi G, Schock B, Wilson M, Weber S, Eiserich J, van der Vliet A (2002) a focus on micronutrient antioxidant–oxidant interactions. Environmental oxidant pollutant effects on biologic systems. Am J Respir Crit Care Med 166:44–50. doi: 10.1164/rccm.2206015 CrossRefGoogle Scholar
  15. Dong Y (1997) Effects of ABA and 6-BA on CO2 assimilation in wheat seedling under water stress. Acta Agron Sin 23:501–504Google Scholar
  16. Eckey-Kaltenbach H, Heller E, Sandermann H (1994) Biochemical plant responses to ozone (iv. cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104(1):67–74. doi: 10.1104/pp.104.1.67 PubMedGoogle Scholar
  17. Elsik CG, Flagler RB (1994) Effects of EDU and Ozoban on the response of shortleaf pine to ozone. Bull Ecol Soc America; Annual Ecological Society of America (ESA) meeting: science and public policy, Knoxville. TN United States 75(2):7–11Google Scholar
  18. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28(15):997–1011. doi: 10.1111/j.1365-3040.2005.01349.x CrossRefGoogle Scholar
  19. Fletcher R, Adedipe N, Ormrod D (1972) Abscisic acid protects beans leaves from ozone-induced phytotoxicity. Can J Bot 50:2389–2391. doi: 10.1139/b72-305 CrossRefGoogle Scholar
  20. Freebairn HT (1957) Reversal of inhibitory effects of ozone on oxygen uptake by mitochondria. Science 126:303CrossRefPubMedGoogle Scholar
  21. Grace S, Logan B (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B 355:499–1510CrossRefGoogle Scholar
  22. Haggag WM, El-Khair HA (2007) Application of some natural compounds for management of potato late and early blights. J Food Agric Environ 5(2):157–163Google Scholar
  23. Hamada AM (2000) Amelioration of drought stress by ascorbic acid, thiamin and aspirin in wheat plants. Indian J Plant Physiol 5:358–364Google Scholar
  24. Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423Google Scholar
  25. Heath R (1988) Biochemical mechanisms of pollutant stress. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier, London, pp 259–286Google Scholar
  26. Heath RL (2007) Alterations of the biochemical pathways of plants by the air pollutant ozone: which are the true gauges of injury? ScientificWorldJournal 21(7, Suppl 1):110–118Google Scholar
  27. Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155(3):453–463. doi: 10.1016/j.envpol.2008.03.010 CrossRefPubMedGoogle Scholar
  28. Hiller W, Rosemann D, Pflanz K, Sandman H (1990) Ozone-induction of secondary metabolism in Scots pine and Norway spruce. Bull Liaison 15:104Google Scholar
  29. Holland M, Kinghorn S, Emberson L, Cinderby S, Ashmore M, Mills G, Harmens H (2006) Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Part of the UNECE International Cooperative Programme on vegetation. Contract report EPG 1/3/205. CEH project no: C02309NEWGoogle Scholar
  30. Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant Cell Environ 17(7):783–794. doi: 10.1111/j.1365-3040.1994.tb00173.x CrossRefGoogle Scholar
  31. Karenlampi L, Metsarinne S, Paakkonen E (1998) Stomatal conductance of birch leaves—plenty of variation in the variable which determines the ozone dose. Chemosphere 36:675–678. doi: 10.1016/S0045-6535(97)10106-0 CrossRefGoogle Scholar
  32. Keen N, Taylor O (1975) Ozone injury in soybeans. Isoflavonoid accumulation is related to necrosis. Plant Physiol 55:731–733. doi: 10.1104/pp.55.4.731 CrossRefPubMedGoogle Scholar
  33. Koch J, Scherzer A, Eshita S, Davis K (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense gene activation. Plant Physiol 118:1243–1252. doi: 10.1104/pp.118.4.1243 CrossRefGoogle Scholar
  34. Krasil’nikov NA (1958) Soil microorganisms and higher plants. Academy of Sciences of the USSR, MoscowGoogle Scholar
  35. Krupa S (2003) Atmosphere and agriculture in the new millennium. Environ Pollut 126:293–300. doi: 10.1016/S0269-7491(03)00242-2 CrossRefPubMedGoogle Scholar
  36. Kubi J (2005) The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol Plant 27(3):289–295. doi: 10.1007/s11738-005-0005-7 CrossRefGoogle Scholar
  37. Kuehler E, Flagler R (1999) The effects of sodium erythorbate and ethylenediurea on photosynthetic function of ozone exposed loblolly pine seedlings. Environ Pollut 105(1):25–35. doi: 10.1016/S0269-7491(98)00211-5 CrossRefGoogle Scholar
  38. Kurchii BA (2000) Possible free radical mechanisms of action of auxin and kinetin. In: 12th Congress of the Federation of European Societies of plant physiology, 21–25 August 2000, Budapest. Plant Physiol Biochem 38(Supplement), Abstract S08-39, p. 91Google Scholar
  39. Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. Part I: differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889. doi: 10.1104/pp.95.3.882 CrossRefPubMedGoogle Scholar
  40. Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9(4B):829–842PubMedGoogle Scholar
  41. Mahalingam R, Shah N, Scrymgeour A, Fedoroff N (2005) Temporal evolution of the Arabidopsis oxidative stress response. Plant Mol Biol 57:709–730. doi: 10.1007/s11103-005-2860-4 CrossRefPubMedGoogle Scholar
  42. Manning WJ (1992) Assessing the effects of ozone on plants: use and misuse of ethylendiurea (EDU). In: Proceedings of the 85th air and waste management association meeting. Kansas City, Missouri, pp 95–100Google Scholar
  43. Manning WJ, Vardaro PM (1973) Suppression of oxidant injury on beans by systemic fungicides. Phytopathology 63:1415–1416. doi: 10.1094/Phyto-63-1415 CrossRefGoogle Scholar
  44. Manning WJ, Flagler RB, Frenkel MA (2003) Assessing plant response to ambient ozone: growth of ozone-sensitive loblolly pine seedlings treated with ethylenediurea or sodium erythorbate. Environ Pollut 126(1):73–81. doi: 10.1016/S0269-7491(03)00141-6 CrossRefPubMedGoogle Scholar
  45. Menser HA (1963) Response of plants to air pollutants. Part III: a relation between ascorbic acid levels and ozone susceptibility of light-preconditioned tobacco plants. Plant Physiol 38:564–567. doi: 10.1104/pp.38.5.605 CrossRefGoogle Scholar
  46. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L et al (2007) A synthesis of AOT40-based response functions and critical levels of ozone for 11 agricultural and horticultural crops. Atmos Environ 41:2630–2643. doi: 10.1016/j.atmosenv.2006.11.016 CrossRefGoogle Scholar
  47. Moldau H, Padu E, Bichele I (1997) Quantification of ozone decay and requirement for ascorbate in Phaseolus vulgaris L. mesophyll cell walls. Phyton 37:175–180Google Scholar
  48. Ormrod DP, Beckerson DW (1986) Polyamines as anti-ozonants for tomato. Hortic Sci 21(4):1070–1071Google Scholar
  49. Palavan-Unsal N (1995) Stress and polyamine metabolism. Bulg J Plant Physiol 21(2–3):3–14Google Scholar
  50. Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32:631–635. doi: 10.1016/j.bse.2003.12.002 CrossRefGoogle Scholar
  51. Pasqualini S, Antoniellia M, Ederlia L, Piccionia C, Loreto F (2002) Ozone uptake and its effect on photosynthetic parameters of two tobacco cultivars with contrasting ozone sensitivity. Plant Physiol Biochem 40(6–8):599–603. doi: 10.1016/S0981-9428(02)01426-2 CrossRefGoogle Scholar
  52. Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134. doi: 10.1104/pp.103.026591 CrossRefPubMedGoogle Scholar
  53. Pauls KP, Thompson JE (1982) Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol 23(5):821–832Google Scholar
  54. Puckette MC, Tang Y, Mahalingam R (2008) Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biol 8:46. doi: 10.1186/1471-2229-8-46 CrossRefPubMedGoogle Scholar
  55. Rajasekaran LR, Blake TJ (1999) New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J Plant Growth Regul 18:175–181. doi: 10.1007/PL00007067 CrossRefPubMedGoogle Scholar
  56. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi: 10.1016/S1360-1385(97)01018-2 CrossRefGoogle Scholar
  57. Robles C, Greff S, Pasqualini V, Garzino S, Bousquet-Melou A, Fernandez C, Korboulewsky N, Bonin G (2003) Phenols and flavonoids in aleppo pine needles as bioindicators of air pollution. J Environ Qual 32:2265–2271CrossRefPubMedGoogle Scholar
  58. Runeckles VC, Resh HM (1975) Effects of cytokinins on responses of bean leaves to chronic ozone treatment. Atmos Environ 9:749–753CrossRefPubMedGoogle Scholar
  59. Saeidi-Sar S, Khavari-Nejad R, Fahimi H, Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in Glycine max seedlings under nickel stress. Russ J Plant Physiol 54(1):74–79CrossRefGoogle Scholar
  60. Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factor in wheat plants. Bulg J Plant Physiol 29(Special Issue):314–319Google Scholar
  61. Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146(3):707–714. doi: 10.1016/j.envpol.2006.04.006 CrossRefPubMedGoogle Scholar
  62. Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radic Biol Med 23(3):480–488. doi: 10.1016/S0891-5849(97)00108-1 CrossRefPubMedGoogle Scholar
  63. Siegel SM (1962) Protection of plants against airborne oxidants: cucumber seedlings at extreme ozone levels. Plant Physiol 37:261–266. doi: 10.1104/pp.37.3.261 CrossRefPubMedGoogle Scholar
  64. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295PubMedGoogle Scholar
  65. Thwaites RH, Ashmore MR, Morton AJ, Pakeman RJ (2006) The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environ Pollut 144(2):500–509. doi: 10.1016/j.envpol.2006.01.028 CrossRefPubMedGoogle Scholar
  66. Tilh P, Falke HE, Prinsen MK, Willems MI (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol 35(3–4):337–348. doi: 10.1016/S0278-6915(97)00121-X Google Scholar
  67. Tomlinson H, Rich S (1973) Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathology 63:903–906. doi: 10.1094/Phyto-63-903 CrossRefGoogle Scholar
  68. Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O-3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702. doi: 10.1111/j.1365-3040.2006.01542.x CrossRefPubMedGoogle Scholar
  69. Turcsanyi E, Lyons T, Plochl M, Barnes J (2000) Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.). J Exp Bot 51(346):901–910. doi: 10.1093/jexbot/51.346.901 CrossRefPubMedGoogle Scholar
  70. Vahala J, Keinanen M, Schutzendubel A, Polle A, Kangasjarvi J (2003) Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiol 132:196–205. doi: 10.1104/pp.102.018630 CrossRefPubMedGoogle Scholar
  71. Verbeke P, Siboska GE, Clark BFC, Rattan SIS (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Comm 276:1265–1270. doi: 10.1006/bbrc.2000.3616 CrossRefPubMedGoogle Scholar
  72. Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32(5):520–531. doi: 10.1111/j.1365-3040.2009.01946.x CrossRefPubMedGoogle Scholar
  73. Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402. doi: 10.1016/j.atmosenv.2004.03.067 CrossRefGoogle Scholar
  74. Wang T, Wang S, Guo S, Sun Y (2006) Effects of exogenous spermidine on Cucumis sativus L. seedlings photosynthesis under root zone hypoxia stress. Chin J Ecol 17(9):1609–1612Google Scholar
  75. Wenzel AA, Schlautmann H, Jones CA, Kuppers K, Mehlhorn H (1995) Aminoethoxyvinylglycine, cobalt and ascorbic acid all reduce ozone toxicity in mung beans by inhibition of ethylene biosynthesis. Physiol Plant 93(2):286–290. doi: 10.1111/j.1399-3054.1995.tb02230.x CrossRefGoogle Scholar
  76. Whitaker BD, Lee EH, Rowland RA (1990) EDU and ozone protection: Foliar glycerolipids and steryl lipids in snapbean exposed to O3. Physiol Plant 80(2):286–293. doi: 10.1111/j.1399-3054.1990.tb04409.x CrossRefGoogle Scholar
  77. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849. doi: 10.1016/j.freeradbiomed.2004.01.001 CrossRefPubMedGoogle Scholar
  78. Wu Y, Von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116(1):37–47. doi: 10.1016/S0269-7491(01)00174-9 CrossRefPubMedGoogle Scholar
  79. Yoshida M, Nouchi I, Toyama S (1994) Studies on the role of active oxygen in ozone injury to plant cells. II. Effect of antioxidants on rice protoplasts exposed to ozone. Plant Sci 95(2):207–212. doi: 10.1016/0168-9452(94)90094-9 CrossRefGoogle Scholar
  80. Yoshida M, Tamaoki T, Shikano N, Nakajima D, Ogawa M, Ioki M, Aono A., Kubo H, Kamada Y, Inoue Y et al (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308. doi: 10.1093/pcp/pci246 Google Scholar
  81. Zhang X, Ervin EH (2004) Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1737–1745CrossRefGoogle Scholar
  82. Zheng Y, Lyons T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38(5):403–411. doi: 10.1016/S0981-9428(00)00755-5 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010

Authors and Affiliations

  1. 1.Department of Allelopathy, “M.M. Gryshko” National Botanical GardenNational Academy of Sciences of UkraineKievUkraine
  2. 2.Laboratory of Bioindication and Chemosystematics, “M. M. Gryshko” National Botanical GardenNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations