Acta Physiologiae Plantarum

, Volume 32, Issue 4, pp 789–800 | Cite as

Loss-of-function of DELLA protein SLN1 activates GA signaling in barley aleurone

  • Kegui Chen
  • Shulan Tian
  • Brian S. Yandell
  • Shawn M. Kaeppler
  • Yong-qiang Charles An
Original Paper


Gibberellic acid (GA) is an important signaling molecule that participates in many aspects of plant growth and development. While the importance of this hormone is clear, the transcriptional regulatory networks involved are still being characterized. The cereal aleurone, particularly the barley aleurone, has been used as a classic model to study GA and GA signaling for many years, and these studies have significantly contributed to our understanding of GA in plant biology. The objective of this study was to characterize the transcripts regulated through the DELLA protein SLN1, a negative regulator of the GA signaling pathway. To detect the transcripts, Affymetrix Barley 1 GeneChips were hybridized with RNA extracted from barley aleurone treated with GA or aleurone of the DELLA mutant sln1c without GA treatment. The transcripts detected, in term of both expressed genes and their function, were highly similar between the GA-treatment and the sln1c mutant. These results from a genome-wide transcript analysis provide evidence that SLN1 in the GA signal transduction pathway controls almost all GA-induced genes in the barley aleurone.


Aleurone Gibberellic acid DELLA SLN1 Hordeum vulgare Transcripts 



Abscisic acid


Gibberellic acid


Mitogen-activated protein


Significance analysis of microarray



The authors thank Stacey Madson, and Sandra BonDurant for their technical help, Dr. Lishuang Shen (Virtual Reality Applications Center, Iowa State University, Ames, IA, USA) for searching BarleyBase, Dr. Peter M. Chandler (Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australia) for kindly providing sln1 mutants and treatment method, and Dr. Ron Skadsen and Dr. Li Lin for their critical reading and thoughtful comments in the manuscript. This research was partially funded by USDA ARS, Cereal Crops Research Unit CRIS fund and North American Barley Genome Mapping Project.

Disclaimer Note Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Supplementary material

11738_2010_464_MOESM1_ESM.xls (282 kb)
Supplementary material 1 (XLS 282 kb)
11738_2010_464_MOESM2_ESM.xls (29 kb)
Supplementary material 2 (XLS 29 kb)
11738_2010_464_MOESM3_ESM.xls (26 kb)
Supplementary material 3 (XLS 26 kb)
11738_2010_464_MOESM4_ESM.xls (26 kb)
Supplementary material 4 (XLS 25 kb)
11738_2010_464_MOESM5_ESM.xls (30 kb)
Supplementary material 5 (XLS 29 kb)
11738_2010_464_MOESM6_ESM.xls (22 kb)
Supplementary material 6 (XLS 21 kb)
11738_2010_464_MOESM7_ESM.xls (21 kb)
Supplementary material 7 (XLS 21 kb)


  1. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104:6484–6489. doi: 10.1073/pnas.0610717104 CrossRefPubMedGoogle Scholar
  2. Ariizumi T, Steber CM (2007) Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. Plant Cell 19:791–804. doi: 10.1105/tpc.106.048009 CrossRefPubMedGoogle Scholar
  3. Ariizumi T, Murase K, Sun T-P, Steber CM (2008) Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20:2447–2459. doi: 10.1105/tpc.108.058487 CrossRefPubMedGoogle Scholar
  4. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472. doi: 10.1105/tpc.108.062935 CrossRefPubMedGoogle Scholar
  5. Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113. doi: 10.1007/s00425-005-0057-3 CrossRefPubMedGoogle Scholar
  6. Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525. doi: 10.1104/pp.106.082289 CrossRefPubMedGoogle Scholar
  7. Chandler PM (1988) Hormonal regulation of gene expression in the “slender” mutant of barley (Hordeum vulgare L.). Planta 175:115–120. doi: 10.1007/BF00402888 CrossRefGoogle Scholar
  8. Chandler PM, Robertson M (1999) Gibberellin dose-response curves and the characterization of dwarf mutants of barley. Plant Physiol 120:623–632. doi: 10.1104/pp.120.2.623 CrossRefPubMedGoogle Scholar
  9. Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190. doi: 10.1104/pp.010917 CrossRefPubMedGoogle Scholar
  10. Chen K, An Y-QC (2006) Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Plant Biol 48:591–612. doi: 10.1111/j.1744-7909.2006.00270.x CrossRefGoogle Scholar
  11. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064. doi: 10.1242/dev.00992 CrossRefPubMedGoogle Scholar
  12. Chrispeels MJ, Varner JE (1967) Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol 42:398–406. doi: 10.1104/pp.42.3.398 CrossRefPubMedGoogle Scholar
  13. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22 k barley GeneChip comes of age. Plant Physiol 134:960–968. doi: 10.1104/pp.103.034462 CrossRefPubMedGoogle Scholar
  14. Dill A, Jung H-S, Sun T-P (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98:14162–14167. doi: 10.1073/pnas.251534098 CrossRefPubMedGoogle Scholar
  15. Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Molec Biol 40:305–346. doi: 10.1146/annurev.pp.40.060189.001513 CrossRefGoogle Scholar
  16. Foster CA (1977) Slender: an accelerated extension growth mutant of barley. Barley Genet Newslett 7:24–27Google Scholar
  17. Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200. doi: 10.1105/tpc.006197 CrossRefPubMedGoogle Scholar
  18. Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1gar2–1 protein promotes plant growth by increasing the affinity of the SCFsly1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418. doi: 10.1105/tpc.021386 CrossRefPubMedGoogle Scholar
  19. Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by SUB1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819. doi: 10.1073/pnas.0807821105 CrossRefPubMedGoogle Scholar
  20. Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693. doi: 10.1104/pp.010442 CrossRefPubMedGoogle Scholar
  21. Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ, Gong F, Phillips AL, Hedden P, Sun T-P, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414. doi: 10.1105/tpc.106.047415 CrossRefPubMedGoogle Scholar
  22. Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a MYB gene in barley aleurone cells: evidence for MYB transactivation of a high-pl α-amylase gene promoter. Plant Cell 7:1879–1891. doi: 10.1105/tpc.7.11.1879 CrossRefPubMedGoogle Scholar
  23. Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen VJ (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17:1–9. doi: 10.1046/j.1365-313X.1999.00346.x CrossRefPubMedGoogle Scholar
  24. Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200. doi: 10.1104/pp.010918 CrossRefPubMedGoogle Scholar
  25. Hou X, Hu W-W, Shen L, Lee LYC, Tao Z, Han J-H, Yu H (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol 147:1126–1142. doi: 10.1104/pp.108.121301 CrossRefPubMedGoogle Scholar
  26. Huttly AK, Phillips AL (1995) Gibberellin-regulated plant genes. Physiol Plant 95:310–317. doi: 10.1111/j.1399-3054.1995.tb00843.x CrossRefGoogle Scholar
  27. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010. doi: 10.1105/tpc.13.5.999 CrossRefPubMedGoogle Scholar
  28. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70. doi: 10.1105/tpc.010319 CrossRefPubMedGoogle Scholar
  29. Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y, Minami E, Ashikari M, Matsuoka M (2005) Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant Cell Physiol 46:1392–1399. doi: 10.1093/pcp/pci152 CrossRefPubMedGoogle Scholar
  30. Iuchi S, Suzuki H, Kim Y-C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M (2007) Multiple loss-of-function of arabidopsis gibberellin receptor atgid1s completely shuts down a gibberellin signal. Plant J 50:958–966. doi: 10.1111/j.1365-313X.2007.03098.x CrossRefPubMedGoogle Scholar
  31. Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2002) The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270. doi: 10.1104/pp.010785 CrossRefPubMedGoogle Scholar
  32. Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J 35:104–115. doi: 10.1046/j.1365-313X.2003.01780.x CrossRefPubMedGoogle Scholar
  33. Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16:33–44. doi: 10.1105/tpc.017327 CrossRefPubMedGoogle Scholar
  34. King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776PubMedGoogle Scholar
  35. Koornneef M, Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theor Appl Genet 58:257–263. doi: 10.1007/BF00265176 CrossRefGoogle Scholar
  36. Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658. doi: 10.1101/gad.969002 CrossRefPubMedGoogle Scholar
  37. Liu Y, Bergervoet JHW, Vos CHR, Hilhorst HWM, Kraak HL, Karssen CM, Bino RJ (1994) Nuclear replication activities during imbibition of abscisic acid- and gibberellin-deficient tomato (Lycopersicon esculentum Mill.) seeds. Planta 194:368–373. doi: 10.1007/BF00197537 Google Scholar
  38. Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N, Weiss D (2009) Cytosolic activity of spindly implies the existence of a della-independent gibberellin-response pathway. Plant J 58:979–988. doi: 10.1111/j.1365-313X.2009.03840.x CrossRefPubMedGoogle Scholar
  39. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-P, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130. doi: 10.1105/tpc.010827 CrossRefPubMedGoogle Scholar
  40. Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol 130:111–119. doi: 10.1104/pp.005561 CrossRefPubMedGoogle Scholar
  41. Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721. doi: 10.1105/tpc.104.027920 CrossRefPubMedGoogle Scholar
  42. Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491. doi: 10.1046/j.1365-313X.2003.01641.x CrossRefPubMedGoogle Scholar
  43. Nakajima M, Shimada A, Takashi Y, Kim Y-C, Park S-H, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization of arabidopsis gibberellin receptors. Plant J 46:880–889. doi: 10.1111/j.1365-313X.2006.02748.x CrossRefPubMedGoogle Scholar
  44. Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H-S, Sun T-P, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208. doi: 10.1105/tpc.107.050153 CrossRefPubMedGoogle Scholar
  45. Peng J (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205. doi: 10.1101/gad.11.23.3194 CrossRefPubMedGoogle Scholar
  46. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261. doi: 10.1038/22307 CrossRefPubMedGoogle Scholar
  47. Radley M (1967) Site of production of gibberellin-like substances in germinating barley embryos. Planta 75:164–171. doi: 10.1007/BF00387132 CrossRefGoogle Scholar
  48. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898. doi: 10.1126/science.1081077 CrossRefPubMedGoogle Scholar
  49. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. doi: 10.1038/ng1543 CrossRefPubMedGoogle Scholar
  50. Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal-transduction pathway. Plant Cell 10:155–169. doi: 10.1105/tpc.10.2.155 CrossRefPubMedGoogle Scholar
  51. Silverstone AL, Jung H-S, Dill A, Kawaide H, Kamiya Y, Sun T-P (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566. doi: 10.1105/tpc.13.7.1555 CrossRefPubMedGoogle Scholar
  52. Skadsen RW (1993) Aleurones from a barley with low α-amylase activity become highly responsive to gibberellin when detached from the starchy endosperm. Plant Physiol 102:195–203. doi: 10.1104/pp.102.1.195 PubMedGoogle Scholar
  53. Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444. doi: 10.1111/j.1365-313X.2006.02795.x CrossRefPubMedGoogle Scholar
  54. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121. doi: 10.1073/pnas.091062498 CrossRefPubMedGoogle Scholar
  55. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-P (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019. doi: 10.1104/pp.104.039578 CrossRefPubMedGoogle Scholar
  56. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-Y, Hsing Y-Ic, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698. doi: 10.1038/nature04028 CrossRefPubMedGoogle Scholar
  57. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155. doi: 10.1105/tpc.106.043729 CrossRefPubMedGoogle Scholar
  58. Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the GID2 mutant. Plant Cell 20:2437–2446. doi: 10.1105/tpc.108.061648 CrossRefPubMedGoogle Scholar
  59. Vierstra RD (2003) The ubiquitin/26s proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142. doi: 10.1016/S1360-1385(03)00014-1 CrossRefPubMedGoogle Scholar
  60. Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol 133:850–863. doi: 10.1104/pp.103.027334 CrossRefPubMedGoogle Scholar
  61. Wattenberg BW, Pitson SM, Raben DM (2006) The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 47:1128–1139. doi: 10.1194/jlr.R600003-JLR200 CrossRefPubMedGoogle Scholar
  62. Wen C-K, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100. doi: 10.1105/tpc.010325 CrossRefPubMedGoogle Scholar
  63. Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220. doi: 10.1105/tpc.107.051441 CrossRefPubMedGoogle Scholar
  64. Woodger FJ, Jacobsen JV, Gubler F (2004) GMPOZ, a BTB/POZ domain nuclear protein, is a regulator of hormone responsive gene expression in barley aleurone. Plant Cell Physiol 45:945–950. doi: 10.1093/pcp/pch100 CrossRefPubMedGoogle Scholar
  65. Wu Z, Irizarry RA (2004) Preprocessing of oligonucleotide array data. Nat Biotech 22:656–658. doi: 10.1038/nbt0604-656b CrossRefGoogle Scholar
  66. Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827–7832. doi: 10.1073/pnas.0402377101 CrossRefPubMedGoogle Scholar
  67. Zentella R, Yamauchi D, Ho T-hD (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301. doi: 10.1105/tpc.003376 CrossRefPubMedGoogle Scholar
  68. Zentella R, Zhang Z-L, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun T-P (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057. doi: 10.1105/tpc.107.054999 CrossRefPubMedGoogle Scholar
  69. Zhang Z-L, Xie Z, Zou X, Casaretto J, Ho T-hD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513. doi: 10.1104/pp.103.034967 CrossRefPubMedGoogle Scholar
  70. Zou X, Neuman D, Shen QJ (2008) Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. Plant Physiol 148:176–186. doi: 10.1104/pp.108.123653 CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.Department of AgronomyUniversity of WisconsinMadisonUSA
  2. 2.Department of Plant PathologyUniversity of WisconsinMadisonUSA
  3. 3.Departments of Horticulture and StatisticsUniversity of WisconsinMadisonUSA
  4. 4.US Department of Agriculture, Agricultural Research Service Plant Genetics Research at Donald Danforth Plant Science CenterSt. LouisUSA

Personalised recommendations