Advertisement

Acta Physiologiae Plantarum

, Volume 31, Issue 5, pp 1065–1075 | Cite as

Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level

  • Arleta Małecka
  • Marta Derba-Maceluch
  • Katarzyna Kaczorowska
  • Aneta Piechalak
  • Barbara Tomaszewska
Original Paper

Abstract

Reactive oxygen species (ROS) production and enzymatic antioxidative system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), alternative oxidase (AOX)] in nonphotosynthesizing pea plant cells were investigated. From the roots of pea plants cultivated hydroponically on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO3)2, the three following fractions were isolated by means of a Percoll gradient: cytosol, peroxisomal, and mitochondrial. Lead stress caused H2O2 production in these organelles. The mitochondria from pea cell roots were the main site of H2O2 production. Intensive stress caused by 0.5 mM of Pb(NO3)2 brought about a decrease of H2O2 concentration in mitochondria and peroxisomes after 3 days of the exposition, which was due to an increase of CAT activity. The isoenzymatic profile of antioxidative enzymes indicates mitochondrial and peroxisomal localization of MnSOD and cytoplasmic localization of CuSOD. APOX activity was estimated for all three fractions: cytosol, mitochondria, and peroxisomes. Simultaneously, we observed an increased expression of AOX genes on the basis of the amount of mRNA transcript and confirmed it immunologically on the level of synthesized AOX protein (36 kDa). This has been the first evidence of AOX genes expression of which is induced by the treatment of plants with lead ions and it increases along with the concentration of metal.

Keywords

Enzymatic antioxidative system Lead Mitochondria Oxidative stress Peroxisomes 

Notes

Acknowledgments

This work was partially supported by the Polish Committee for Scientific Research (KBN) grant no KBN 2PO4G 069 26 and interdisciplinary grant of Adam Mickiewicz University and Agriculture University in Poznan no 512 00 055.

References

  1. Aebi HE (1983) Catalase in vitro. In: Bergmeyer HU (ed) Methods of enzymatic analyses, vol 3. Verlag Chemie, Weinheim, pp 273–282Google Scholar
  2. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi: 10.1016/0003-2697(71)90370-8 PubMedCrossRefGoogle Scholar
  3. Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171. doi: 10.1104/pp.82.4.1169 PubMedCrossRefGoogle Scholar
  4. Blokhina O, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 359:1179–1190. doi: 10.1093/jexbot/52.359.1179 CrossRefGoogle Scholar
  5. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi: 10.1093/aob/mcf118 CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  7. Carriere A, Fernandez Y, Rigoulet M, Penicaud L, Casteilla L (2003) Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 550:163–167. doi: 10.1016/S0014-5793(03)00862-7 PubMedCrossRefGoogle Scholar
  8. Davis BJ (1964) Disc electrophoresis II. Methods and application to human serum proteins. Ann N Y Acad Sci 121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x PubMedCrossRefGoogle Scholar
  9. del Rio LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933. doi: 10.1093/jxb/erg091 PubMedCrossRefGoogle Scholar
  10. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141. doi: 10.1016/S0300-9084(02)01369-X PubMedCrossRefGoogle Scholar
  11. Fung RWM, Wang CY, Smith DL, Gross KC, Tian M (2004) MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Sci 166:711–719. doi: 10.1016/j.plantsci.2003.11.009 CrossRefGoogle Scholar
  12. Gomez JM, Hernandez JA, Jinez A, del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:11–18. doi: 10.1080/10715769900301261 CrossRefGoogle Scholar
  13. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182:321–331. doi: 10.1111/j.1365-201X.2004.01370.x PubMedCrossRefGoogle Scholar
  14. Jimenez A, Hernandez A, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335. doi: 10.1104/pp.118.4.1327 PubMedCrossRefGoogle Scholar
  15. Jimenez A, Gomez JM, Navarro E, Sevilla F (2002) Changes in the antioxidative systems in mitochondria during ripening of pepper fruits. Plant Physiol Biochem 40:515–520. doi: 10.1016/S0981-9428(02)01424-9 CrossRefGoogle Scholar
  16. Juszczuk I, Malusa E (2001) Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J Plant Physiol 158:1299–1305. doi: 10.1078/0176-1617-00541 CrossRefGoogle Scholar
  17. Juszczuk IM, Tybura A, Rychter AM (2008) Protein oxidation in the leaves and roots of cucumber plants (Cucumi sativus L.) mutant MSC 16 and wild type. J Plant Physiol 165:355–365. doi: 10.1016/j.jplph.2007.06.021 PubMedCrossRefGoogle Scholar
  18. Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defence to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698PubMedGoogle Scholar
  19. Malecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637. doi: 10.1007/s11738-008-0159-1 CrossRefGoogle Scholar
  20. Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279Google Scholar
  21. McCabe PC, Finnegan PM, Millar H, Day DA, Whelan J (1998) Differential expression of alternative oxidase genes in soybean cotyledons during postgerminative development. Plant Physiol 118:675–682. doi: 10.1104/pp.118.2.675 PubMedCrossRefGoogle Scholar
  22. Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546. doi: 10.1006/abio.1993.1366 PubMedCrossRefGoogle Scholar
  23. Mittova V, Theodoulou F, Kiddle G, Volokita M, Tal M, Foyer C, Guy M (2004) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27:237–250. doi: 10.1046/j.1365-3040.2004.01150.x CrossRefGoogle Scholar
  24. Mőller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735. doi: 10.1039/b315561g PubMedCrossRefGoogle Scholar
  25. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  26. Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195. doi: 10.1111/j.1399-3054.2006.00777.x CrossRefGoogle Scholar
  27. Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610. doi: 10.1016/j.crvi.2008.04.008 PubMedCrossRefGoogle Scholar
  28. Parsons HL, Yip JYH, Vanlerberghe GC (1999) Increased respiratory restrictions during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol 121:1309–1320. doi: 10.1104/pp.121.4.1309 PubMedCrossRefGoogle Scholar
  29. Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579. doi: 10.1016/j.jplph.2007.07.016 PubMedCrossRefGoogle Scholar
  30. Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53:185–193. doi: 10.1016/j.envexpbot.2004.03.014 CrossRefGoogle Scholar
  31. Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260. doi: 10.1016/j.jplph.2007.01.013 PubMedCrossRefGoogle Scholar
  32. Romero-Puertas M, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357. doi: 10.1016/j.jplph.2006.06.018 PubMedCrossRefGoogle Scholar
  33. Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906. doi: 10.1016/j.plaphy.2004.12.001 PubMedCrossRefGoogle Scholar
  34. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. doi: 10.1590/S1677-04202005000100004 CrossRefGoogle Scholar
  35. Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50PubMedGoogle Scholar
  36. Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol 165:1610–1619. doi: 10.1016/j.jplph.2007.11.004 PubMedCrossRefGoogle Scholar
  37. Szal B, Drozd M, Rychter AM (2004) Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis. J Plant Physiol 161:1339–1346. doi: 10.1016/j.jplph.2004.03.005 PubMedCrossRefGoogle Scholar
  38. Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Mol Biol 48:703–734CrossRefGoogle Scholar
  39. Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Marci F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252. doi: 10.1111/j.1399-3054.2006.00767.x CrossRefGoogle Scholar
  40. Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Ann Biochem 44:301–305. doi: 10.1016/0003-2697(71)90375-7 CrossRefGoogle Scholar
  41. Yamamoto Y, Kobayashi Y, Rama Devi S, Rikiishi S, Matsumoto H (2002) Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72. doi: 10.1104/pp.010417 PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2009

Authors and Affiliations

  • Arleta Małecka
    • 1
  • Marta Derba-Maceluch
    • 2
  • Katarzyna Kaczorowska
    • 1
  • Aneta Piechalak
    • 1
  • Barbara Tomaszewska
    • 1
  1. 1.Department of Biochemistry, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
  2. 2.Department of Molecular and Cellular Biology, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations