Acta Physiologiae Plantarum

, Volume 31, Issue 4, pp 871–875 | Cite as

Improvement of an RNA purification method for grapevine (Vitis vinifera L.) suitable for cDNA library construction

  • Samia Daldoul
  • Synda Chenenanoui
  • Ahmed Mliki
  • Michael Höfer
Short Communication

Abstract

A method is described, which consistently yields high quality total RNA from grapevine. Dissolving of crude RNA pellets in borate-containing buffer, instead of normally used water before a selective lithium chloride precipitation, was found to be a critical step, leading to a 2.5-fold increase of yield. The resulting RNA preparations were suitable for standard downstream applications and also for cDNA library construction. The method worked efficiently and reproducibly and could easily be scaled from milligram to gram quantities of plant material grown in hydroponic culture, sandy soil or Perlite. It was applied to different kinds of grapevine tissues (leaves, stem) and, after additional adaptation of the protocol, to roots.

Keywords

cDNA library construction Grape RNA extraction Tris–borate Vitis vinifera L. 

Abbreviations

DEPC

Diethyl pyrocarbonate

EDTA

Ethylene diamine tetra-acetic acid

EF1α

Elongation factor one alpha

FW

Fresh weight

PVPP

Polyvinylpolypyrrolidone

P:C:I

Phenol:chloroform:isoamylalcohol

RT-PCR

Reverse transcription-polymerase chain reaction

SD

Standard deviation

SDS

Sodium dodecyl sulphate

Notes

Acknowledgments

The authors thank Claudia Linhard (AlPlanta) for the excellent technical assistance and Manfred Jutzi (DLR Rheinpfalz, Neustadt a.d. Weinstrasse, Germany) for performing the statistical analyses. This work was supported in part by an ICGEB research grant (CRP/TUN06-01). S. Daldoul was also supported by a research grant of the German Academic Exchange Service (DAAD).

References

  1. Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Björkbacka H, Birve SJ, Karlsson J, Gardeström P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442. doi:10.1104/pp.012732 PubMedCrossRefGoogle Scholar
  2. Boss PK, Davies C (2001) Molecular biology of sugar and anthocyanin accumulation in grape berries. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer Academic Publishers, Netherlands, pp 1–33Google Scholar
  3. Daldoul S, Höfer MU, Linhard C, Jallouli N, Mliki A, Reustle GM, Ghorbel A (2008) Expression analysis of salt stress responsive genes in grapevines. In: Abdelly C, Öztürk M, Ege Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser Verlag AG, Switzerland, pp 297–303CrossRefGoogle Scholar
  4. Fleige S, Pfaffl W (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139. doi:10.1016/j.mam.2005.12.003 PubMedCrossRefGoogle Scholar
  5. Gasic K, Hernandez A, Korban S (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437a–437g. doi:10.1007/BF02772687 CrossRefGoogle Scholar
  6. Iandolino AB, Silva GF, Lim H, Choi H, Williams LE, Cook DR (2004) High-quality RNA; cDNA; and derived est libraries from grapevine (Vitis vinifera L.). Plant Mol Biol Rep 22:269–278. doi:10.1007/BF02773137 CrossRefGoogle Scholar
  7. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Nathalie Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyaire C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Federica Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Giorgio Malacrida G, Durand E, Pesole G, Laucou V, Philippe Chatelet P, Didier Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148 PubMedCrossRefGoogle Scholar
  8. Manning K (1991) Isolation of nucleic acids from plants by differential solvant precipitation. Anal Biochem 195:45–50. doi:10.1016/0003-2697(91)90292-2 PubMedCrossRefGoogle Scholar
  9. Renault AS, Deloire A, Letinois I, Kraeva E, Tesniere C, Ageorges A, Redon C, Bierne J (2000) Beta-1,3-glucanase gene expression in grapevine leaves as a response to infection with Botrytis cinerea. Am J Enol Vitic 5:81–87Google Scholar
  10. Tattersall EAR, Ergul A, AlKayal F, DeLuc L, Cushman JC, Cramer GR (2005) Comparison of methods for isolating high-quality RNA from leaves of grapevine. Am J Enol Vitic 56(4):400–406Google Scholar
  11. Thomas P, Schiefelbein JW (2002) Improved method for purification of RNA from stem tissue of grapevine and its use in mRNA profiling. Am J Enol Vitic 53:231–234Google Scholar
  12. Troggio M, Pezzulli S, Pindo M, Malacarne G, Fontana P, Moreira FM, Costantini L, Grando MS, Viola R, Velasco R (2008) Beyond the genome, opportunities for a modern viticulture: a research overview. Am J Enol Vitic 59(2):117–127Google Scholar
  13. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223. doi:10.1016/S1369-5266(02)00256-X PubMedCrossRefGoogle Scholar
  14. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantification. Biotechniques 39:75–85. doi:10.2144/05391RV01 PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2009

Authors and Affiliations

  • Samia Daldoul
    • 1
    • 2
  • Synda Chenenanoui
    • 1
    • 2
  • Ahmed Mliki
    • 1
  • Michael Höfer
    • 2
  1. 1.Laboratoire de Physiologie Moléculaire de la VigneHammam-LifTunisia
  2. 2.RLP AgroScience GmbH, AlPlantaNeustadt an der WeinstrasseGermany

Personalised recommendations