Acta Physiologiae Plantarum

, Volume 31, Issue 2, pp 311–318 | Cite as

Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability

  • Iolanda Filella
  • Josep Peñuelas
  • Roger Seco
Original Paper


Short-chained oxygenated VOC (oxVOCs) emissions from Pinus halepensis saplings were monitored in response to changes in water availability. Online measurements were made with a proton transfer reaction—mass spectrometer under controlled conditions, together with CO2 and H2O exchange measurements. Masses corresponding to methanol and acetone were the most emitted oxVOCs. All the oxVOC exchanges, except that of acetone (M59), were significantly related to stomatal conductance and transpiration. Acetaldehyde (M45) emission showed, moreover, a strong dependence on the concentration of acetaldehyde in the ambient: stomatal opening (stomatal conductance above 75 mmol m−2 s−1) only allowed increased emissions when external concentration were below 6 ppb. Acetone (M59) presented an important peak of emission following light and stomatal opening in the morning when plants were water stressed. Thus, the alterations in oxVOC emissions in P. halepensis caused by the water deficit seem to be mainly driven by water stress effect on stomatal closure and oxVOC air concentrations.


Acetaldehyde Acetic acid Acetone Drought Ethanol Formic acid Methanol oxVOCs Pinus halepensis 



This research was partially supported by Spanish MCYT grants REN2003-04871, CGL2004-01402/BOS and CGL-2006-04025/BOS, the European Commission RTN “ISONET” contract MC-RTN-CT-2003-504720, the European Science Foundation “VOCBAS” program, a Fundación BBVA 2004 grant and a Catalan government SGR2005-00312 grant. Roger Seco gratefully acknowledges a FPI fellowship (BES-2005-6989) from MEC (Spanish Government).


  1. de Gouw JA, Goldan PD, Warneke C, Kuster WC, Roberts JM, Marchewka M, Bertman SB, Pszenny AAP, Keene WC (2003) Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res 108:4682CrossRefGoogle Scholar
  2. Di Castri F (1973) Climatographical comparison between Chile and the western coast of North America. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems: origin and structure. Springer, Berlin, pp 21–36Google Scholar
  3. Ebel CR, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emission of volatile compounds. Physiol Plant 93:709–712CrossRefGoogle Scholar
  4. Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4952PubMedCrossRefGoogle Scholar
  5. Filella I, Peñuelas J (2006) Daily, weekly and seasonal relationships among VOCs, NOx and O3 in a semi-urban area near Barcelona. J Atmos Chem 54:189–201CrossRefGoogle Scholar
  6. Filella I, Peñuelas J, Llusia J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144PubMedCrossRefGoogle Scholar
  7. Filella I, Wilkinson M, Llusià J, Hewitt CN, Peñuelas J (2007) Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol Plant 130:58–66CrossRefGoogle Scholar
  8. Gabriel R, Schafer L, Gerlach C, Rausch T, Kesselmeier J (1999) Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak). Atmos Environ 33(9):1347–1355CrossRefGoogle Scholar
  9. Gleadow RM, Woodrow IE (2002) Defense chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol 22:939–945PubMedGoogle Scholar
  10. Gouinguené SP, Turlings TCJ (2002) The effect of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1300PubMedCrossRefGoogle Scholar
  11. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892CrossRefGoogle Scholar
  12. Hansel A, Jordan A, Warneke C, Holzinger R, Lindinger W (1998) Improved detection limit of the proton-transfer-reaction mass-spectrometer: on-line monitoring of volatile organic compounds at mixing ratios of a few pptv. Rapid Commun Mass Spectrom 12:871–875CrossRefGoogle Scholar
  13. Hansel A, Jordan A, Warneke C, Holzinger R, Wisthaler A, Lindinger W (1999) Proton-transfer-reaction mass-spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv. Plasma Sour Sci Technol 8:332–336CrossRefGoogle Scholar
  14. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press. Cambridge, p 870Google Scholar
  15. Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 109(D18):D18306CrossRefGoogle Scholar
  16. Karl T, Harley P, Guenther A, Rasmussen R, Baker B, Jardine K, Nemitz E (2005) The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere. Atmos Chem Phys 5:3015–3031CrossRefGoogle Scholar
  17. Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmos Chem 39(3):219–233CrossRefGoogle Scholar
  18. Kesselmeier J, Bode K, Hofmann U, Muller H, Schafer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133CrossRefGoogle Scholar
  19. Kesselmeier J, Bode K, Gerlach C, Jork EM (1998) Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions. Atmos Environ 32(10):1765–1775CrossRefGoogle Scholar
  20. Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, te Lintel-Hekkert S, Scheerer U, Huglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees—correlation with physiological and environmental parameters. Physiol Plant 113(1):41–49CrossRefGoogle Scholar
  21. Kuhn U, Rottenberger S, Biesenthal T, Ammann C, Wolf A, Schebeske G, Oliva ST, Tavares TM, Kesselmeier J (2002) Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia. J Geophys Res Atmos 107(D20):8069CrossRefGoogle Scholar
  22. Lelieveld J, Berresheim H, Borrmann S, Crutzen PJ, Dentener FJ, Fischer H, Feichter J, Flatau PJ, Heland J, Holzinger R, Korrmann R, Lawrence MG, Levin Z, Markowicz KM, Mihalopoulos N, Minikin A, Ramanathan V, de Reus M, Roelofs GJ, Scheeren HA, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J, Ziereis H (2002) Global air pollution crossroads over the Mediterranean. Science 298(5594):794–799PubMedCrossRefGoogle Scholar
  23. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of Proton-transfer-reaction mass spectrometry (PTR-MS). Medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241CrossRefGoogle Scholar
  24. Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373CrossRefGoogle Scholar
  25. Munné-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766PubMedCrossRefGoogle Scholar
  26. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves—enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368PubMedGoogle Scholar
  27. Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res 108:4208CrossRefGoogle Scholar
  28. Peñuelas J, Llusià J (1999) Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ Exp Bot 42(1):61–68CrossRefGoogle Scholar
  29. Peñuelas J, Llusià J (2001a) The complexity of factors driving volatile organic compound emissions by plants. Biol Plant 44(4):481–487CrossRefGoogle Scholar
  30. Peñuelas J, Llusià J (2001b) Seasonal patterns of non-terpenoid C6-C10VOC emission from seven Mediterranean woody species. Chemosphere 45(3):237–244PubMedCrossRefGoogle Scholar
  31. Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109PubMedCrossRefGoogle Scholar
  32. Peñuelas J, Filella I, Sabate S, Gracia C (2005a) Natural systems: terrestrial ecosystems. In: Llebot JE (ed) Report on climate change in Catalonia. Institut d’Estudis Catalans, Barcelona, pp 517–553Google Scholar
  33. Peñuelas J, Filella I, Stefanescu C, Llusià J (2005b) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857PubMedCrossRefGoogle Scholar
  34. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  35. Sabaté S, Gracia C, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162:23–37CrossRefGoogle Scholar
  36. Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res Atmos 106(D3):3111–3123CrossRefGoogle Scholar
  37. Schade GW, Goldstein AH (2002) Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pine trees. J Geophys Res 107(D10):4082CrossRefGoogle Scholar
  38. Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499. doi: 10.1016/j.atmosenv.2006.11.029 CrossRefGoogle Scholar
  39. Simon V, Dumergues L, Solignac G, Torres L (2005) Biogenic emissions from Pinus halepensis: a typical species of the Mediterranean area. Atmos Res 74(1–4):37–48CrossRefGoogle Scholar
  40. Staudt M, Wolf A, Kesselmeier J (2000) Influence of environmental factors on the emissions of gaseous formic and acetic acids from orange (Citrus sinensis L.) foliage. Biogeochemistry 48(2):199–216CrossRefGoogle Scholar
  41. Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res. doi: 10.1029/2001JD002043
  42. Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1324–1354Google Scholar
  43. Warneke C, de Gouw JA, Kuster WC, Goldan PD, Fall R (2003) Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. Environ Sci Technol 37:2494–2501PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2008

Authors and Affiliations

  1. 1.Unitat Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals)Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations