Acta Physiologiae Plantarum

, 31:207 | Cite as

Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex

  • Josep-Salvador Blanch
  • Josep Peñuelas
  • Jordi Sardans
  • Joan Llusià
Original Paper


The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.


Fertilization Pinus halepensis Quercus ilex Temperature Terpene concentration Water stress 


  1. Alessio GA, Penuelas J, De Lillis M, Llusia J (2008) Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol 1:123–128. doi:10.1111/j.1438-8677.2007.00011.x Google Scholar
  2. Banthorpe DV, Njar VCO (1984) Light-dependent monoterpene sintesis in Pinus radiata cultures. Phytochem 23:295–299. doi:10.1016/S0031-9422(00)80321-0 CrossRefGoogle Scholar
  3. Barceló J, Nicolás J, Sabater B, Sánchez R (1992) Fisiología vegetal. 662Google Scholar
  4. Barrs HD, Weatherley PE (1962) A re-examination of relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 3:413–428Google Scholar
  5. Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 4:456–462. doi:10.1007/BF00333935 CrossRefGoogle Scholar
  6. Blanch JS, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 2:211–225. doi:10.1111/j.1399-3054.2007.00944.x Google Scholar
  7. Bradford D, Hsiao T (1982) Physiological responses to moderate water stress. In: Lange O, Novel P, Osmond C (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 263–324Google Scholar
  8. Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 2:244–254. doi:10.1111/j.1469-8137.2007.02094.x CrossRefGoogle Scholar
  9. Bryant JP, Chapin FS, Klein DR (1983) Carbon nutrient balance of Boreal plants in relation to vertebrate herbivory. Oikos 3:357–368. doi:10.2307/3544308 CrossRefGoogle Scholar
  10. Delfine S, Loreto F, Pinelli P, Tognetti R, Alvino A (2005) Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric Ecosyst Environ 2–3:243–252. doi:10.1016/j.agee.2004.10.012 CrossRefGoogle Scholar
  11. EC-UN/ECE-FBVA (1997) Forest foliar condition in Europe, results of large-scale foliar chemistry surveysGoogle Scholar
  12. Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berbembaum MR (eds) Herbivores, their interactions with secondary metabolites. Academic Press, New York, pp 165–219Google Scholar
  13. Gershenzon J, Lincoln DE, Langenheim JH (1978) Effect of moisture stress on monoterpenoid yield and composition in Satureja-Douglasii. Biochem Syst Ecol 1:33–43. doi:10.1016/0305-1978(78)90022-4 CrossRefGoogle Scholar
  14. Hodges JD, Lorio PL (1975) Moisture Stress and Composition of Xylem Oleoresin in Loblolly-Pine. For Sci 3:283–290Google Scholar
  15. IPCC (2007) The physical science basis. Contribution of working group I. In: Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press New York, pp 1–996Google Scholar
  16. Kainulainen P, Oksanen J, Palomaki V, Holopainen JK, Holopainen T (1992) Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Can J Bot Rev Can Bot 8:1613–1616Google Scholar
  17. King DJ, Gleadow RM, Woodrow IE (2004) Terpene deployment in Eucalyptus polybractea; relationships with leaf structure, environmental stresses, and growth. Funct Plant Biol 5:451–460. doi:10.1071/FP03217 CrossRefGoogle Scholar
  18. Kreuzwieser J, Schnitzler JP, Steinbrecher R (1999) Biosynthesis of organic compounds emitted by plants. Plant Biol 2:149–159. doi:10.1111/j.1438-8677.1999.tb00238.x CrossRefGoogle Scholar
  19. Langenheim JH (1994) Higher-plant terpenoids—a phytocentric overview of their ecological roles. J Chem Ecol 6:1223–1280. doi:10.1007/BF02059809 CrossRefGoogle Scholar
  20. Lerdau M, Matson P, Fall R, Monson R (1995) Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga–Menziesii). Ecology 8:2640–2647. doi:10.2307/2265834 CrossRefGoogle Scholar
  21. Litvak ME, Loreto F, Harley PC, Sharkey TD, Monson RK (1996) The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees 5:549–559Google Scholar
  22. Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 1:133–140. doi:10.2307/2656691 CrossRefGoogle Scholar
  23. Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 8:1366–1373. doi:10.1139/cjb-76-8-1366 CrossRefGoogle Scholar
  24. Llusià J, Peñuelas J, Asensio D, Munne-Bosch S (2005) Airborne limonene confers limited thermotolerance to Quercus ilex. Physiol Plant 1:40–48. doi:10.1111/j.1399-3054.2004.00426.x CrossRefGoogle Scholar
  25. Llusià J, Peñuelas J, Alessio GA, Estiarte M (2006) Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four domiant species of a Mediterranean shrubland submitted to a field experimental drought and warming. Physiol Plant 4:632–649. doi:10.1111/j.1399-3054.2006.00693.x CrossRefGoogle Scholar
  26. Loomis WD, Croteau R (1973) Biochemistry and physiology of lower terpenoids. 147–185Google Scholar
  27. Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D (1996) Influence of environmental factors and air composition on the emission of alpha-pinene from Quercus ilex leaves. Plant Physiol 1:267–275Google Scholar
  28. Loreto F, Fischbach RJ, Schnitzler JP, Ciccioli P, Brancaleoni E, Calfapietra C et al (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 6:709–717. doi:10.1046/j.1354-1013.2001.00442.x CrossRefGoogle Scholar
  29. Lorio PL (1986) Growth-differentiation balance—a basis for understanding Southern Pine-Beetle tree interactions. For Ecol Manage 4:259–273CrossRefGoogle Scholar
  30. Manninen AM, Holopainen T, Holopainen JK (1998) Susceptibility of ectomycorrhizal and nonmycorrhizal Scots pine (Pinus sylvestris) seedlings to a generalist insect herbivore, Lygus rugulipennis, at two nitrogen availability levels. New Phytol 1:55–63. doi:10.1046/j.1469-8137.1998.00246.x CrossRefGoogle Scholar
  31. McKinnon ML, Quiring DT, Bauce E (1998) Influence of resource availability on growth and foliar chemistry within and among young white spruce trees. Ecoscience 3:295–305Google Scholar
  32. Muzika RM, Pregitzer KS, Hanover JW (1989) Changes in terpene production following nitrogen-fertilization of grand fir (Abies grandis (Dougl) Lindl) seedlings. Oecologia 4:485–489. doi:10.1007/BF00380070 CrossRefGoogle Scholar
  33. Niinemets U, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002) Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 2:243–256. doi:10.1046/j.0028-646X.2001.00323.x CrossRefGoogle Scholar
  34. Niinemets U, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 4:180–186. doi:10.1016/j.tplants.2004.02.006 CrossRefGoogle Scholar
  35. Ormeño E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G et al (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 2:276–284. doi:10.1016/j.chemosphere.2006.10.029 CrossRefGoogle Scholar
  36. Peñuelas J, Filella I (2001) Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. Glob Change Biol 4:427–433. doi:10.1046/j.1365-2486.2001.00421.x CrossRefGoogle Scholar
  37. Peñuelas J, Llusià J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J Chem Ecol 4:979–993. doi:10.1023/B:JOEC.0000006383.29650.d7 CrossRefGoogle Scholar
  38. Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 1:20–24. doi:10.1016/S0169-5347(97)01235-4 CrossRefGoogle Scholar
  39. Peñuelas J, Llusià J (1999) Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ Exp Bot 1:61–68. doi:10.1016/S0098-8472(99)00018-0 CrossRefGoogle Scholar
  40. Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emissions by plants. Biol Plant 4:481–487. doi:10.1023/A:1013797129428 CrossRefGoogle Scholar
  41. Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 2:227–237. doi:10.1046/j.1469-8137.2002.00457.x CrossRefGoogle Scholar
  42. Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 3:105–109. doi:10.1016/S1360-1385(03)00008-6 CrossRefGoogle Scholar
  43. Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. 8:402–404. doi:10.1016/j.tree.2004.06.002
  44. Peñuelas J, Llusià J, Estiarte M (1995) Terpenoids—a plant language. 7:289–289Google Scholar
  45. Piñol J, Terradas J, Lloret F (1998) Climate Warning, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357. doi:10.1023/A:1005316632105 CrossRefGoogle Scholar
  46. Peñuelas J, Filella I, Sabaté S, Gracia C (2005) Natural systems: terrestrial ecosystems. In: Llebot JE (ed) Report on Climate Change in Catalonia, Institut d’Estudis Catalans Barcelona, pp 517–553Google Scholar
  47. Plaza J, Nuñez L, Pujadas M, Perrez-Pastor R, Bermejo V, Garcia-Alonso S et al (2005) Field monoterpene emission of Mediterranean oak (Quercus ilex) in the central Iberian Peninsula measured by enclosure and micrometeorological techniques: Observation of drought stress effect. J Geophys Res Atmos D3. doi:10.1029/2004JD005168
  48. Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS et al (2006) Physiological responses of forest trees to heat and drought. Plant Biol 5:556–571. doi:10.1055/s-2006-924084 CrossRefGoogle Scholar
  49. Rodà F, Avila A, Rodrigo A (2002) Nitrogen deposition in Mediterranean forests. Environ Pollut 2:205–213. doi:10.1016/S0269-7491(01)00313-X CrossRefGoogle Scholar
  50. Ross JD, Sombrero C (1991) Environmental control of essential oil production in Mediterranean plants. In: Harborne JB Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 83–94Google Scholar
  51. Rubaek GH, Heckraths G, Djurhuus J, Olesen EE, Ostergaard HS (2000) Are Danish soils saturated with phosphorus? In: Jacobsen OH, Kromvang B (eds) Phosphorus loss from agricultural areas to the aquatic environment, vol 34. DIAS report No. 2000 Denmark, pp 17–30Google Scholar
  52. Sardans J, Peñuelas J (2004) Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 1–2:367–377. doi:10.1007/s11104-005-0172-8 CrossRefGoogle Scholar
  53. Sardans J, Peñuelas J, Rodà F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees Struct Funct 3:233–250. doi:10.1007/s00468-004-0374-3 Google Scholar
  54. Sardans J, Peñuelas J, Rodà F (2006) The effects of nutrient availability and removal of competing vegetation on resprouter capacity and nutrient accumulation in the shrub Erica multiflora. Acta Oecol 2:221–232. doi:10.1016/j.actao.2005.10.006 CrossRefGoogle Scholar
  55. Sardans J, Peñuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 2:191–201. doi:10.1111/j.1365-2435.2007.01247.x CrossRefGoogle Scholar
  56. Schonwitz R, Merk L, Kloos M, Ziegler H (1991) Influence of needle loss, yellowing and mineral-content on monoterpenes in the needles of Picea abies (L) Karst. Trees Struct Funct 4:208–214Google Scholar
  57. Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 4:2001–2006. doi:10.1104/pp.125.4.2001 CrossRefGoogle Scholar
  58. Staudt M, Mandl N, Joffre R, Rambal S (2001) Intraspecific variability of monoterpene composition emitted by Quercus ilex leaves. Can J For Res Rev Can Rech For 1:174–180CrossRefGoogle Scholar
  59. Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on Monoterpene emission rates from Slash Pine. Plant Physiol 5:797–801CrossRefGoogle Scholar
  60. Tingey DT, Turner DP, Weber JA (1991) Factors controlling the emission of monoterpenes and other volatile compounds. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emission by plants. Academic Press, San Diego, pp 93–120Google Scholar
  61. Turtola S, Manninen AM, Rikala R, Kainulainen P (2003) Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J Chem Ecol 9:1981–1995. doi:10.1023/A:1025674116183 CrossRefGoogle Scholar
  62. Vallat A, Gu HN, Dorn S (2005) How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 13:1540–1550. doi:10.1016/j.phytochem.2005.04.038 CrossRefGoogle Scholar
  63. Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ et al (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 10:1367–1376. doi:10.1016/j.plph.2007.05.001 CrossRefGoogle Scholar
  64. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 3:737–750Google Scholar
  65. Yani A, Pauly G, Faye M, Salin F, Gleizes M (1993) The effect of a long-term water-stress on the metabolism and emission of terpenes of the foliage of Cupressus sempervirens. Plant Cell Environ 8:975–981. doi:10.1111/j.1365-3040.1993.tb00521.x CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2008

Authors and Affiliations

  • Josep-Salvador Blanch
    • 1
  • Josep Peñuelas
    • 1
  • Jordi Sardans
    • 1
  • Joan Llusià
    • 1
  1. 1.Ecophysiology and Global Change Unit CREAF-CEAB-CSIC, CREAF (Center for Ecological Research and Forestry Applications), Edifici CUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain

Personalised recommendations