Advertisement

Acta Physiologiae Plantarum

, Volume 31, Issue 1, pp 13–19 | Cite as

Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants

  • Kamal K. Biswas
  • Adam J. Foster
  • Theingi Aung
  • Soheil S. Mahmoud
Review

Abstract

The terpenoids, or isoprenoids, are a large family of natural products that are best known as constituents of the essential oils in plants. Because of their pleasant flavor and aromatic properties, essential oils have an economic importance in perfumery, cosmetic, pharmaceutical and various other industries. However, expression profiles of regulatory genes in essential oil production have not been dissected entirely, which may be an interesting topic of future research. In this report, we review recent studies on isoprenoids biosynthesis in plants. We also discuss the progress of our recent research activities on isoprenoid studies.

Keywords

Isoprenoid Glandular trichome Lavender 

Notes

Acknowledgements

Grants for this work supported to Soheil Mahmoud from Natural Sciences and Engineering Research Council of Canada, Investment Agriculture Foundation of British Columbia, Western Economic Diversification Canada, Canada Foundation for Innovation, British Columbia Knowledge Development Fund, and UBC Okanagan.

References

  1. Babili A, Hoa TT, Schaub P (2006) Exploring the potential of the bacterial carotene desaturase Crtl to increase the beta-carotene content in golden rice. J Exp Bot 57:1007–1014. doi: 10.1093/jxb/erj086 CrossRefGoogle Scholar
  2. Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67:1661–1672. doi: 10.1016/j.phytochem.2006.02.004 PubMedCrossRefGoogle Scholar
  3. Behnam S, Farzaneh M, Ahmadzadeh M, Tehrani AS (2006) Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun Agric Appl Biol Sci 71:1321–1326PubMedGoogle Scholar
  4. Bertea CM, Alessandra V, Verstappen FWA, Maffei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448:3–12. doi: 10.1016/j.abb.2006.02.026 Google Scholar
  5. Bertomeu JM, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-d-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142:890–900. doi: 10.1104/pp.106.086355 CrossRefGoogle Scholar
  6. Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato (Lycopersicon esculentum). J Chem Ecol 31:2211–2216. doi: 10.1007/s10886-005-6228-7 PubMedCrossRefGoogle Scholar
  7. Casteel CL, Ranger CM, Backus EA, Ellersieck MR, Johnson DW (2006) Influence of plant ontogeny and abiotic factors on resistance of glandular-haired alfalfa to potato leafhopper (Hemiptera: Cicadellidae). J Econ Entomol 99:537–543PubMedCrossRefGoogle Scholar
  8. Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343PubMedGoogle Scholar
  9. Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494. doi: 10.1105/tpc.007989 PubMedCrossRefGoogle Scholar
  10. Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E et al (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966. doi: 10.1104/pp.104.044388 PubMedCrossRefGoogle Scholar
  11. Concepciön RM (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400. doi: 10.2174/1381612043384006 CrossRefGoogle Scholar
  12. Concepciön RM, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089. doi: 10.1104/pp.007138 CrossRefGoogle Scholar
  13. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicumn L. var. Genovese. Mycorrhiza 16:485–494. doi: 10.1007/s00572-006-0065-6 PubMedCrossRefGoogle Scholar
  14. Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68:1864–1871. doi: 10.1016/j.phytochem.2007.02.016 PubMedCrossRefGoogle Scholar
  15. Dronne S, Moja S, Jullien F, Berger F, Caissard JC (1999) Agrobacterium-mediated ransformation of lavandin (Lavandula x intermedia Emeric ex Loiseleur). Transl Res 8:335–347. doi: 10.1023/A:1008948113305 CrossRefGoogle Scholar
  16. Dubey VS, Bhala R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646. doi: 10.1007/BF02703339 PubMedCrossRefGoogle Scholar
  17. Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpene. Trends Plant Sci 6:78–84. doi: 10.1016/S1360-1385(00)01812-4 PubMedCrossRefGoogle Scholar
  18. Enfissi EM, Frase PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27. doi: 10.1111/j.1467-7652.2004.00091.x PubMedCrossRefGoogle Scholar
  19. Estrada LB, Santana ZC, Oyama K (2000) Variation in leaf trichomes of Wiggandia urens: environmental factors and physiological consequences. Tree Physiol 20:629–632Google Scholar
  20. Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J et al (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17:1252–1267. doi: 10.1105/tpc.104.029736 PubMedCrossRefGoogle Scholar
  21. Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166:740–754. doi: 10.1006/dbio.1994.1352 PubMedCrossRefGoogle Scholar
  22. Gerholo DL, Craig R, Mumma RO (1984) Analysis of trichome exudate from mite resistant geraniums. J Chem Ecol 10:713–722. doi: 10.1007/BF00988538 CrossRefGoogle Scholar
  23. Gianfagna TJ, Carter CD, Sacalis JN (1992) Temperature and Photoperiod influence trichome density and sesquiterpene content of Lycopersicon hirsutum f. hirsutum. Plant Physiol 100:1403–1405PubMedCrossRefGoogle Scholar
  24. Hare JD, Elle E (2002) Variable impact of diverse insect herbivores on dimorphic Datura wrightil. Ecology 83:2711–2720CrossRefGoogle Scholar
  25. Hare JD, Walling LL (2006) Constitutive and Jasmonate-inducible traits of Datura wrightii. J Chem Ecol 32:29–47. doi: 10.1007/s10886-006-9349-8 PubMedCrossRefGoogle Scholar
  26. Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutant in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J 46:317–326. doi: 10.1111/j.1365-313X.2006.02696.x PubMedCrossRefGoogle Scholar
  27. Helmig DO, Duhl T, Tanner D, Guenther A, Harley P, Wiedinmyer C et al (2007) Sesquiterpenne emissions from pine trees-identifications, emission rates and flux estimates for the contiguous United States. Environ Sci Technol 42:1545–1553. doi: 10.1021/es0618907 CrossRefGoogle Scholar
  28. Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lűttgen H, Sagner S et al (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2, 4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490. doi: 10.1073/pnas.040554697 PubMedCrossRefGoogle Scholar
  29. Hesk D, Collins LC, Craig R, Mumma RO (1990) Arthropod-resistant and-susceptible geraniums. Comparison of chemistry. In Hedin PA (ed) Naturally occurring pest bioregulators. ACS Symposium Series 449. Washington, pp 224–250Google Scholar
  30. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA 104:5360–5365. doi: 10.1073/pnas.0700915104 PubMedCrossRefGoogle Scholar
  31. Iijima Y, Gang DR, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379. doi: 10.1104/pp.103.032946 PubMedCrossRefGoogle Scholar
  32. Kapoor R, Chaudhary V, Bhatnager AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587. doi: 10.1007/s00572-007-0135-4 PubMedCrossRefGoogle Scholar
  33. Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochemistry 67:2415–2423. doi: 10.1016/j.phytochem.2006.08.019 PubMedCrossRefGoogle Scholar
  34. Kobayashi K, Suzuki M, Tang J, Nagata N, Ohyama K, Seki H et al (2007) Lovastatin insensitive 1, a novel pentatricopeptide repeat protein, is a regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant Cell Physiol 48:322–331. doi: 10.1093/pcp/pcm005 PubMedCrossRefGoogle Scholar
  35. Lange BM, Wildung MR, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95:2100–2104. doi: 10.1073/pnas.95.5.2100 PubMedCrossRefGoogle Scholar
  36. Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939. doi: 10.1073/pnas.97.6.2934 PubMedCrossRefGoogle Scholar
  37. Lehnebach CA, Robertson AW (2004) Pollination ecology of four epiphytic orchids of New Zealand. Ann Bot 93:773–781. doi: 10.1093/aob/mch097 PubMedCrossRefGoogle Scholar
  38. Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME et al (2004) The tomato homolog of coronatine-insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143. doi: 10.1105/tpc.017954 PubMedCrossRefGoogle Scholar
  39. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. doi: 10.1146/annurev.arplant.50.1.47 PubMedCrossRefGoogle Scholar
  40. Liu Y, Wang H, Ye HC, Li GF (2005) Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol 47:769–782. doi: 10.1111/j.1744-7909.2005.00111.x CrossRefGoogle Scholar
  41. Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler JP (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143:540–551. doi: 10.1104/pp.106.092759 PubMedCrossRefGoogle Scholar
  42. Maffei M, Chialva F, Sacco T (1989) Glandular trichomes and essential oils in developing peppermint leaves. New Phytol 111:707–716. doi: 10.1111/j.1469-8137.1989.tb02366.x CrossRefGoogle Scholar
  43. Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14481–14486. doi: 10.1073/pnas.2436325100 PubMedCrossRefGoogle Scholar
  44. Mahmoud SS, Williams M, Croteau R (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65:547–554. doi: 10.1016/j.phytochem.2004.01.005 PubMedCrossRefGoogle Scholar
  45. Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:137–163. doi: 10.1146/annurev.arplant.48.1.137 PubMedCrossRefGoogle Scholar
  46. Matoušek J, Vrba L, Novak P, Patzak J, Keukeleire JD, Škopek J et al (2005) Cloning and molecular analysis of the regulatory factor HIMyb1 in hop (Humulus lupulus L.) and the potential of hop to produce bioactive prenylated flavonoids. J Agric Food Chem 53:4793–4798. doi: 10.1021/jf050175y PubMedCrossRefGoogle Scholar
  47. McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56. doi: 10.1007/BF00239938 CrossRefGoogle Scholar
  48. McCaskill D, Croteau R (1999) Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat Biotechnol 17:31–36. doi: 10.1038/5202 PubMedCrossRefGoogle Scholar
  49. McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–223. doi: 10.1104/pp.122.1.215 PubMedCrossRefGoogle Scholar
  50. Nebauer SG, Arrillaga I, Agudo LC, Segura J (2000) Agrobacterium tumefaciens-mediated transformation of the aromatic shrub Lavandula latifolia. Mol Breed 6:539–552. doi: 10.1023/A:1011332904024 CrossRefGoogle Scholar
  51. Nickavar B, Amin G, Salehi MH (2003) Anatomical study on Vaccinium arctostaphylos L. Pharmaceutica 58:274–278Google Scholar
  52. Pinto DM, Blande JD, Nykänen R, Dong WXD, Nerg AM, Holopainen JK (2007) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694. doi: 10.1007/s10886-007-9255-8 PubMedCrossRefGoogle Scholar
  53. Ringer KL, Davis EM, Croteau R (2005) Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol 137:863–872. doi: 10.1104/pp.104.053298 PubMedCrossRefGoogle Scholar
  54. Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163. doi: 10.1073/pnas.032658999 PubMedCrossRefGoogle Scholar
  55. Selvanarayanan V, Muthukumaran N (2005) Insect resistance in tomato accessions and their hybrid derivatives in Tamil Nadu, India. Commun Agric Appl Biol Sci 70:613–624PubMedGoogle Scholar
  56. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884. doi: 10.1073/pnas.95.17.9879 PubMedCrossRefGoogle Scholar
  57. Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavenoid accumulation in leaves and glandular trchomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77. doi: 10.1046/j.1469-8137.2000.00743.x CrossRefGoogle Scholar
  58. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416. doi: 10.1016/j.febslet.2006.01.065 PubMedCrossRefGoogle Scholar
  59. Turner GW, Gershenzon J, Croteau RB (2000a) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124:655–663. doi: 10.1104/pp.124.2.655 PubMedCrossRefGoogle Scholar
  60. Turner GW, Gershenzon J, Croteau RB (2000b) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124:665–679. doi: 10.1104/pp.124.2.665 PubMedCrossRefGoogle Scholar
  61. Walters DS, Grossman HH, Craig R, Mumma RO (1989) Geranium defensive agents IV. Chemical and morphological basis of resistance. J Chem Ecol 15:357–372. doi: 10.1007/BF02027796 CrossRefGoogle Scholar
  62. Werker E, Putievsky E, Ravid U, Dudai N, Katzir I (1993) Glandular hairs and essential oils in developing leaves on Ocimum basilicum L. (Lamiaceae). Ann Bot (Lond) 71:43–50. doi: 10.1006/anbo.1993.1005 CrossRefGoogle Scholar
  63. Yuan LZ, Rouvière PE, LaRissa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90. doi: 10.1016/j.ymben.2005.08.005 PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2008

Authors and Affiliations

  • Kamal K. Biswas
    • 1
  • Adam J. Foster
    • 1
  • Theingi Aung
    • 1
  • Soheil S. Mahmoud
    • 2
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Chemistry and Earth and Environmental SciencesUniversity of British Columbia OkanaganKelownaCanada

Personalised recommendations