Advertisement

Acta Physiologiae Plantarum

, Volume 29, Issue 4, pp 369–374 | Cite as

Daily rhythm of MnSOD in the C3-CAM intermediate Clusia fluminensis Planch. et Triana.

  • A. Kornas
  • I. Ślesak
  • K. Gawronska
  • E. Fischer-Schliebs
  • Z. MiszalskiEmail author
Original Paper

Abstract

The C3-CAM intermediate plant Clusia fluminensis under well-watered at low light conditions opens stomata during the light period. In leaf extracts of this plant we have found two copper-zinc superoxide dismutases (CuZnSODs) and two manganese SODs: MnSOD-like protein (MnSOD II) and MnSOD I. Daily rhythm of the MnSOD I shows maximum activity during the afternoon hours and it is accompanied by only a very small tendency to increase in catalase (CAT) activity and lowering of citrate level.

Keywords

Catalase Crassulacean acid metabolism Oxidative stress Superoxide dismutase 

Abbreviations

CAT

Catalase

DTT

Dithiothreitol

EDTA

Ethylenediaminetetraacetic acid

MnSOD

Mn-superoxide dismutase

CuZnSOD

CuZn-superoxide dismutase

PAGE

Polyacrylamide gel electrophoresis

PEPC

Phosphoenolpyruvate carboxylase

PPFD

Photosynthetic photon flux density

PVPP

Polyvinylpolypyrrolidone

ROS

Reactive oxygen species

SDS

Sodium dodecyl sulphate

TCA

Tricarboxylic acid cycle

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsanstalt für Luft und Raumfahrt (DLR) Germany, and EU grant Qol-2001 Integr. to the Institute of Plant Physiology Polish Academy of Science. This study was partly supported by the Polish MNiSW grant N30308331/2685.

References

  1. Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic, New York, pp 121–126Google Scholar
  2. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  3. Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64CrossRefGoogle Scholar
  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedCrossRefGoogle Scholar
  5. Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265PubMedCrossRefGoogle Scholar
  6. Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Fordham MC (1996) CAM induction in Clusia minor L. during the transition from wet to dry season in Trynidad: the role of organic acid speciation and decarboxylation. Plant Cell Environ 19:655–664CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  8. Castillo F (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477CrossRefGoogle Scholar
  9. Dat J, Vandenabeele S, Vranová E, van Montagu M, Inzé D, van Breusegem F (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795PubMedCrossRefGoogle Scholar
  10. Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis trancriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  11. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, p 936Google Scholar
  12. Herzog B, Grams TEE, Haag-Kerwer A, Ball E, Franco AC, Lüttge U (1999) Expression of modes of photosynthesis (C3, CAM) in Clusia cruiva Camb. in a cerrado gallery forest transect. Plant Biol 1:357–364Google Scholar
  13. Inzé D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158CrossRefGoogle Scholar
  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  15. Libik M, Konieczny R, Surówka E, Miszalski Z (2005) Superoxide dismutase activity in organs of Mesembryanthemum crystallinum L. at different stages of CAM development. Acta Biol Cracov Ser Bot 47:199–204Google Scholar
  16. Lüttge U (1999) One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biol 1:138–148Google Scholar
  17. Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton 40:65–82Google Scholar
  18. Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652PubMedCrossRefGoogle Scholar
  19. de Mattos EA, Lüttge U (2001) Chlorophyll fluorescence and organic acid oscillation during transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae). Ann Bot 88:457–463CrossRefGoogle Scholar
  20. Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H (1999) Modulation of rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 121:849–856PubMedCrossRefGoogle Scholar
  21. Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179CrossRefGoogle Scholar
  22. Miszalski Z, Kornas A, Gawronska K, Ślesak I, Niewiadomska E, Kruk J, Christian AL, Fischer-Schliebs E, Krish R, Lüttge U (2007) Ecophysiological aspects of mitochondrial MnSOD activity in species of Clusia with obligate C3-photosynthesis and C3/CAM intermediate behaviour. Biol Plant 51:86–92CrossRefGoogle Scholar
  23. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  24. Möllering H (1974) Malat. Bestimmung mit Malat-Dehydrogenase und Glutamat-Oxalacetat-Transaminase. In: Bergmeyer HU (ed) Methoden der Enzymologie. Academic, New York, pp 1636–1639Google Scholar
  25. Möllering H (1985) Citrate. Determination with citrate lyase, MDH and LDH. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 2–12Google Scholar
  26. Niewiadomska E, Miszalski Z, Ślesak I, Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryanthemum crystallinum L. leaves. Free Rad Res 31:S251–S256CrossRefGoogle Scholar
  27. Niewiadomska E, Karpinska B, Romanowska E, Ślesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794PubMedCrossRefGoogle Scholar
  28. Roberts A, Borland AM, Griffiths H (1997) Discrimination processes and shifts in carboxylation during the phases of crassulacean acid metabolism. Plant Physiol 113:1283–1292PubMedGoogle Scholar
  29. Salin ML, Bridges SM (1981) Localization of superoxide dismutases in chloroplasts from Brassica campestris. Z Pflanzenphysiol 99:37–45Google Scholar
  30. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12PubMedGoogle Scholar
  31. Schröder Ch (2000) Vergleich von Isoenzymmustern verschidener Vertreter der Gattung Clusia L.: taxonomischer Vergleich und Versuch einer Stammbaumerstellung. University of Technology of Darmstadt, Germany, pp 1–35Google Scholar
  32. Streller S, Krömer S, Wingsle G (1994) Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol 35(6):859–867PubMedGoogle Scholar
  33. Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum in in vitro culture. Plant Sci 164:497–505CrossRefGoogle Scholar
  34. Ślesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677CrossRefGoogle Scholar
  35. Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol (in press)Google Scholar
  36. Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414CrossRefGoogle Scholar
  37. Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 389–426Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2007

Authors and Affiliations

  • A. Kornas
    • 1
  • I. Ślesak
    • 2
  • K. Gawronska
    • 1
  • E. Fischer-Schliebs
    • 3
  • Z. Miszalski
    • 1
    • 2
    Email author
  1. 1.Institute of BiologyPedagogical UniversityKrakówPoland
  2. 2.Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  3. 3.Institute of BotanyDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations