Advertisement

Acta Physiologiae Plantarum

, Volume 27, Issue 4, pp 591–599 | Cite as

Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination

  • María-José Coronado
  • Götz Hensel
  • Sylvia Broeders
  • Ingrid Otto
  • Jochen Kumlehn
Article

Abstract

Barley transformation mediated by Agrobacterium tumefaciens is routinely performed in a number of laboratories. However, elimination of selectable marker genes and formation of plants homozygous for the transgene via conventional segregation is laborious and time-consuming. Here we suggest a concept that includes the production of primary transgenic plants via infection of immature embryos with A. tumefaciens followed by androgenetic generation of a segregating population of entirely homozygous plants. Selectable marker-free, truebreeding plants carrying a single-opy transgene integrant may thus be efficiently and rapidly obtained. However, amenability to Agrobacterium-mediated transformation as well as androgenetic potential is genotype-dependent. Efficient genetic transformation by infection of immature embryos is so far confined to the spring type cultivar ‘Golden Promise’ which, however, turned out to be recalcitrant in pollen embryogenesis. To facilitate androgenetic generation of homozygous segregants from primary transformants, we have established a method for embryogenic pollen culture in cv. Golden Promise that includes conventional cold-treatment and subsequent preculture of immature pollen under starvation conditions prior to transfer to complete nutrient medium. Further we show that conditioning of the pollen culture medium by co-culture of immature wheat pistils as well as addition of pistil-preconditioned medium considerably support androgenetic development. Employment of the established method using immature pollen of primary transgenic plants demonstrates that selectable marker-free, true-breeding transgenic progeny can be rapidly obtained pursuing the concept proposed. The protocol presented will be useful in functional genomics as well as in molecular breeding approaches.

Key words

androgenesis genetic transformation Hordeum vulgare L. microspore pollen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen S., Li X., Liu X., Xu H., Meng K., Xiao G., Wei X., Wang F., Zhu Z. 2005. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep., 23: 625–631.PubMedCrossRefGoogle Scholar
  2. Fang Y.-D., Akula C., Altpeter F. 2002. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol., 159, 1131–1138.CrossRefGoogle Scholar
  3. Funatsuki H., Kuroda H., Kihara M., Lazzeri P.A., Mueller E., Loerz H., Kishinami I. 1995. Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet., 91, 707–712.CrossRefGoogle Scholar
  4. Gustafson V.D., Baenziger P.S., Wright M.S., Stroup W.W., Yen Y. 1995. Isolated wheat microspore culture. Plant Cell, Tiss. Org. Cult., 42: 207–213.CrossRefGoogle Scholar
  5. Hellens, R., Mullineaux, P., Klee H. 2000. A guide to Agrobacterium binary Ti vectors. Trends Plant Sci., 5, 446–451.PubMedCrossRefGoogle Scholar
  6. Hensel G., Kumlehn J. 2004. Genetic transformation of barley (Hordeum vulgare L.) by co-culture of immature embryos with Agrobacteria. In: Transgenic crops of the world — Essential protocols, ed. by Curtis I.S., Kluwer Academic Publishers, Dordrecht: 35–45.Google Scholar
  7. Hohn B., Levy A.A., Puchta H. 2001. Elimination of selection markers from transgenic plants. Curr. Opinion Biotechnol., 12, 139–143.CrossRefGoogle Scholar
  8. Holm P.B., Olsen O., Schnorf M., Brinch-Pedersen H., Knudsen S. 2000. Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res., 9, 21–32.PubMedCrossRefGoogle Scholar
  9. Horvath H., Huang J.T., Wong O., Kohl E., Okita T., Kannangara C.G., von Wettstein D. 2000. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. USA, 97, 1914–1919.PubMedCrossRefGoogle Scholar
  10. Horvath H., Rostoks N., Brueggemann R., Steffenson B., von Wettstein D. Kleinhofs A. 2003. Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc. Natl. Acad. Sci. USA, 100, 364–369.PubMedCrossRefGoogle Scholar
  11. Hu T.C., Kasha K.J. 1997. Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep., 16, 520–525.CrossRefGoogle Scholar
  12. Hunter C.P. 1987. Plant generation method. European Patent Application EP 0245898 2, Bulletin 87/45.Google Scholar
  13. Indrianto A., Heberle-Bors E., Touraev A. 1999. Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspore culture. Plant Sci., 143: 71–79.CrossRefGoogle Scholar
  14. Jaehne A., Becker D., Brettschneider R., Loerz H. 1994. Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet., 89, 525–533.Google Scholar
  15. Koehler F., Wenzel G. 1985. Regeneration of isolated barley microspores in conditioned media and trials to characterizs the responsible factor. J. Plant Physiol., 121, 181–191.Google Scholar
  16. Komari T., Hiei Y., Saito Y., Murai N., Kumashiro T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J., 10, 165–174.PubMedCrossRefGoogle Scholar
  17. Koprek T., Haensch R., Nerlich A., Mendel R.R., Schulze J. 1996. Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci., 119, 79–91.CrossRefGoogle Scholar
  18. Kumlehn J., Loerz H. 1999. Monitoring sporophytic development of individual microspores of barley (Hordeum vulgare L.). In: Anther and Pollen: From Biology to Biotechnology. ed. by Clément C., Pacini E., Audran J.-C., Springer, Berlin Heidelberg New York: 183–190.Google Scholar
  19. Kumlehn J., Serazetdinova L., Hensel G., Becker D., Loerz H. 2006. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J., D01:10.1111/j.1467-7652.2005.00178.k.Google Scholar
  20. Lazo G.R., Stein P.A., Ludwig R.A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technol., 9, 963–967.CrossRefGoogle Scholar
  21. Li H., Devaux P. 2001. Enhancement of microspore culture effiency of recalcitrant barley genotypes. Plant Cell Rep., 20, 475–481.CrossRefGoogle Scholar
  22. Li H., Devaux P. 2003. High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci., 164, 379–386.CrossRefGoogle Scholar
  23. Matthews P.R., Wang M.B., Waterhouse P.M., Thornton S., Fieg S.J., Gubler F., Jacobsen J.V. 2001. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol. Breed., 7, 195–202.CrossRefGoogle Scholar
  24. Mejza S.J., Morgant V., DiBona D., Wong J.R. 1993. Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep., 12, 149–153.CrossRefGoogle Scholar
  25. Miki B., McHugh S. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol., 107, 193–232.PubMedCrossRefGoogle Scholar
  26. Mordhorst A.P., Loerz H. 1993. Embryogenesis and development of isolated barley (Hordeum vulgare L.) microspores are influenced by the amount and composition of nitrogen sources in culture media. J. Plant Physiol., 142, 485–492.Google Scholar
  27. Murray F., Brettell R., Matthews P., Bishop D., Jacobsen J. 2004. Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep., 22, 397–402.PubMedCrossRefGoogle Scholar
  28. Olsen F.L., 1991. Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L.). Hereditas, 115, 255–266.PubMedGoogle Scholar
  29. Palotta M.A., Graham R.D., Langridge P., Sparrow D.H.B., Barker S.J. 2000. RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet., 101, 1100–1108.CrossRefGoogle Scholar
  30. Patel M., Johnson J.S., Brettell R.I.S., Jacobsen J., Xue G.P. 2000. Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol. Breed., 6, 113–123.CrossRefGoogle Scholar
  31. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd. Edition, Cold Spring Harbor Laboratory Press, New York, NY, USA.Google Scholar
  32. Schuenmann P.H.D., Coia G., Waterhouse P.M. 2002. Biopharming the SimpliREDTM HIV diagnostic reagent in barley, potato and tobacco. Mol. Breed., 9, 113–121.CrossRefGoogle Scholar
  33. Schultheiss H., Hensel G., Imani J., Broeders S., Sonnewald U., Kogel K.-H., Kumlehn J., Hueckelhoven R. 2005. Ectopic expression of constitutively activated RACB small GTPase in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol., DOI: 10.1104/pp.105.066613Google Scholar
  34. Stahl R., Horvath H., Van Fleet J., Voetz M., von Wettstein D., Wolf N. 2002. T-DNA integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. USA, 99, 2146–2151.PubMedCrossRefGoogle Scholar
  35. Stein N., Perovic D., Kumlehn J., Pellio B., Stracke S., Streng S., Ordon F., Graner A. 2005. The eukaryotic initiation factor of translation 4E confers multiallelic recessive bymovirus resistance in Hordeum vulgare L. Plant J., 42, 912–922PubMedCrossRefGoogle Scholar
  36. Tingay S., McElroy D., Kalla R., Feig S., Wang M., Thornton S., Brettell R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J., 11, 1369–1376.CrossRefGoogle Scholar
  37. Touraev A., Indrianto I., Wratschko I., Vicente O., Heberle-Bors E. 1996. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex. Plant Reprod., 9, 209–215.CrossRefGoogle Scholar
  38. Travella S., Ross S.M., Harden J., Everett C., Snape J.W., Harwood W.A. 2005. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep., 23, 780–789.PubMedCrossRefGoogle Scholar
  39. Trifonova A., Madsen S., Olesen A. 2001. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci., 162, 871–880.CrossRefGoogle Scholar
  40. Wan Y., and Lemaux P.G. 1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol., 104, 37–48.PubMedGoogle Scholar
  41. Wang M.B., Abbott D.C., Upadhyaya N.M., Jacobsen J.V., Waterhouse P.M. 2001. Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Austral. J. Plant Physiol., 28, 149–156.Google Scholar
  42. Vancanneyt G., Schmidt R., O’Connor-Sanchez A., Willmitzer L., Rocha-Sosa M. 1990. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated transformation. Mol. Gen. Genet., 220, 245–250.PubMedCrossRefGoogle Scholar
  43. von Wettstein D., Mikhaylenko G., Froseth J.A., Kannangara C.G. 2000. Improved barley broiler feed with transgenic malt containing heat stable (1,3–1,4)-beta-glucanase. Proc. Natl. Acad. Sci. USA, 97, 13512–13517.CrossRefGoogle Scholar
  44. Zhang S., Cho M.J., Koprek T., Yun R., Bregitzer P., Lemaux P.G. 1999. Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep., 18, 959–966.CrossRefGoogle Scholar
  45. Zheng M.Y., Liu W., Weng Y., Polle E. and Konzak C.F. 2001. Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep., 20, 685–690.CrossRefGoogle Scholar
  46. Zheng M.Y., Weng Y., Liu W., Konzak C.F. 2002. The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep., 20, 802–807.CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2005

Authors and Affiliations

  • María-José Coronado
    • 1
  • Götz Hensel
    • 1
  • Sylvia Broeders
    • 1
  • Ingrid Otto
    • 1
  • Jochen Kumlehn
    • 1
  1. 1.Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations