Acta Physiologiae Plantarum

, Volume 27, Issue 2, pp 205–212 | Cite as

Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum

  • Andrzej Rzepka
  • Jan Krupa
  • Ireneusz lesak


The effects of hypoxia caused by complete submerging of Mnium undulatum gametophores in water, on their photosynthetic activity and the activity of two antioxidative enzymes: superoxide dismutase (SOD) and catalase (CAT) were investigated. The net photosynthesis was strongly inhibited throughout the experiment, and the strong drop in the maximum quantum yield of the PSII (Fv/Fm) was also observed. Three classes of SOD: MnSOD, FeSOD, Cu/ZnSOD and three isoforms of Cu/ZnSOD were identified. A significant decrease in activity of MnSOD, FeSOD and one Cu/ZnSOD isoform was observed after 24 and 48 h of hypoxia. FeSOD activity decreased already after 1 h of submerging in water and its activity remained at the low level during whole period of the experiment. CAT activity was also strongly inhibited in response to hypoxia stress. The obtained results suggest relationships between photosynthetic activity and antioxidative system in M. undulatum gametophores under oxygen deficiency stress.

Key words

catalase chlorophyll a fluorescence hypoxia Mnium undulatum oxidative stress photosynthesis superoxide dismutase 

List of abbreviations


bovine serum albumin






ethylenediamine tetraacetic acid


ethyleneglycol-bis(beta-aminoethylether)-N,N′-tetracet ic acid


maximum chlorophyll a fluorescence yield


minimum chlorophyll a fluorescence yield


the difference between F m and F o


maximum quantum yield of PSII


nitroblue tetrazolium salt


polyacrylamide gel electrophoresis


photosynthetically active radiation


net photosynthesis intensity


photosystem II


reactive oxygen species


superoxide dismutase








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi H. 1984. Catalase in vitro. In: Methods in Enzymology, Vol. 105, Academic Press, Inc: 121–126.Google Scholar
  2. Alscher R.G., Donahue J.L., Cramer C.L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100: 224–233.CrossRefGoogle Scholar
  3. Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.PubMedCrossRefGoogle Scholar
  4. Bartosz G. 1997. Oxidative stress in plants. Acta Physiol. Plant. 19: 47–64.Google Scholar
  5. Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.PubMedCrossRefGoogle Scholar
  6. Blokhina O.B., Chirkova T.V., Fagerstedt K.V. 2001. Anoxic stress leads to hydrogen peroxide formation in plant cells. J. Exp. Bot. 52: 1179–1190.PubMedCrossRefGoogle Scholar
  7. Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.PubMedCrossRefGoogle Scholar
  8. Bowler C., van Montagu M., Inzé D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant. Physiol. Mol. Biol. 43: 83–116.CrossRefGoogle Scholar
  9. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.PubMedCrossRefGoogle Scholar
  10. Bragina T.V., Drozdova I.S., Ponomareva Y.V., Alekhin V.I., Grineva G.M. 2002. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding. Dokl. Biol. Sci. 384: 274–277.PubMedCrossRefGoogle Scholar
  11. Christov K., Bakardjieva N.T. 1999. Effect of calcium and zinc on subcellular distribution, activity and thermosensitivity of superoxide dismutase in Mnium affine., Biol. Plant. 42: 57–63.CrossRefGoogle Scholar
  12. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol. Life Sci. 57: 779–795.CrossRefGoogle Scholar
  13. Dat J.F., Capelli N., Folzer H., Bourgeande P., Badot P-M. 2004. Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42: 273–282.PubMedCrossRefGoogle Scholar
  14. Drew M.C. 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 223–250.PubMedCrossRefGoogle Scholar
  15. Foyer C.H., Noctor G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146: 359–388.CrossRefGoogle Scholar
  16. Ladygin V.G. 1999. Functional activity and chloroplast structure in leaves of Pisum sativum and Glycine max under conditions of root hypoxia and anoxia. Rus. J. Plant Physiol. 46: 207–218.Google Scholar
  17. Liao C-T., Lin C-H. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. ROC (B) 25: 148–157.Google Scholar
  18. Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51: 659–668.PubMedCrossRefGoogle Scholar
  19. Miszalski Z., lesak I., Niewiadomska E., B czek-Kwinta R., Lüttge U., Ratajczak R. 1998. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ. 21: 169–179.CrossRefGoogle Scholar
  20. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.PubMedCrossRefGoogle Scholar
  21. Mustroph A., Albrecht G. 2003. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plant. 117: 508–521.PubMedCrossRefGoogle Scholar
  22. Proctor M. 2001. Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul. 35: 147–156.CrossRefGoogle Scholar
  23. Rzepka A., Krupa J., Rut G. 2002. The influence of anareobic conditions on the dark respiration of moss gametophytes. Zesz. Probl. Post. Nauk Rol. 481: 251–258.Google Scholar
  24. Scandalios J.G. 1994. Regulation and properties of plant catalases. In: Causes of photooxidative stress and amelioration of defense systems in plants. Foyer Ch., Mullineaux P. M., (ed.), Boca Raton, Florida: CRC Press: 275–316.Google Scholar
  25. Schlüter U., Crawford R.M.M. 2001. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J. Exp. Bot. 52: 2213–2225.PubMedGoogle Scholar
  26. lesak I., Miszalski Z. 2003. Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Sci. 164: 497–505.CrossRefGoogle Scholar
  27. Ushimaru T., Ogawa K., Ishida N., Shibasaka M., Kanematsu S., Asada K., Tsuji H. 1995. Changes in organelle superoxide dismutase isoenzymes during air adaptation of submerged rice seedlings: differential behaviour of isoenzymes in plastids and mitochondria. Planta 196: 606–613.CrossRefGoogle Scholar
  28. Ushimaru T., Kanematsu S., Shibasaka M., Tsuji H. 1999. Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiol. Plant. 107: 181–187.CrossRefGoogle Scholar
  29. Ushimaru T., Kanematsu S., Katayama M., Tsuji H. 2001. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol. Plant. 112: 39–46.PubMedCrossRefGoogle Scholar
  30. Willekens H., Inzé D., Van Montagu M., Van Camp W. 1995. Catalases in plants. Mol. Breed. 1: 207–228.CrossRefGoogle Scholar
  31. Yamahara T., Shiono T., Suzuki T., Tanaka K., Takio S., Sato K., Yamazaki S., Satoh T. 1999. Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J. Biol. Chem. 274: 33274–33278.PubMedCrossRefGoogle Scholar
  32. Yordanova R.Y., Alexieva V.S., Popova L.P. 2003. Influence of root oxygen deficiency on photosynthesis and antioxidant status in barley plants. Rus. J. Plant Physiol. 50: 163–167.CrossRefGoogle Scholar
  33. Vartapetian B.B., Jackson M.B. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79: 3–20.CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2005

Authors and Affiliations

  • Andrzej Rzepka
    • 1
  • Jan Krupa
    • 1
  • Ireneusz lesak
    • 2
  1. 1.Department of Plant Physiology, Institute of BiologyPedagogical AcademyKrakówPoland
  2. 2.Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland

Personalised recommendations